cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334973 Odd bi-unitary admirable numbers: the odd terms of A334972.

Original entry on oeis.org

945, 43065, 46035, 48195, 80535, 354585, 403095, 430815, 437745, 442365, 458055, 2305875, 3525795, 4404105, 4891887, 5388495, 5803245, 6126645, 6220665, 6375105, 6537375, 7853625, 7981875, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 13351635, 23760555
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 bi-unitary admirable numbers only 11 are odd.

Crossrefs

The bi-unitary version of A109729.
Intersection of A005408 and A334972.
Subsequence of A293186.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], buAdmQ]