cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334975 Odd infinitary admirable numbers: the odd terms of A334974.

Original entry on oeis.org

945, 43065, 46035, 80535, 354585, 403095, 430815, 437745, 442365, 2305875, 3525795, 4404105, 4891887, 5388495, 5927985, 6126645, 6220665, 6375105, 6537375, 7853625, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 23760555, 33381855, 34592805, 35642295
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 infinitary admirable numbers only 9 are odd.

Crossrefs

The infinitary version of A109729.
Intersection of A005408 and A334974.
Subsequence of A127666.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], infAdmQ]