A334980 a(n) is the total number of down steps between the (n-1)-th and n-th up steps in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
0, 3, 31, 248, 1941, 15334, 122915, 999456, 8231740, 68562887, 576661761, 4891506968, 41801697070, 359574305580, 3111012673755, 27055673506128, 236387476114548, 2073957836402524, 18264689865840284, 161403223665821280, 1430768729986730685, 12719497076318052990
Offset: 0
Examples
For n = 2, the 3_2-Dyck paths are UDDDDDUD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD, DUDDDDUD, DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, DDUDDDUD, DDUDDUDD, DDUDUDDD, DDUUDDDD. Therefore the total number of down steps between the first and second up steps is a(2) = 5 + 4 + 3 + 2 + 1 + 0 + 4 + 3 + 2 + 1 + 0 + 3 + 2 + 1 + 0 = 31.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1027
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Programs
-
Mathematica
a[0] = 0; a[n_] := 3*Binomial[4*n+7, n+1]/(4*n + 7) - 12 * Binomial[4*n + 3, n]/(4*n + 3); Array[a, 22, 0]
-
SageMath
[3*binomial(4*n + 7, n + 1)/(4*n + 7) - 12*binomial(4*n + 3, n)/(4*n + 3) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 19 2020
Formula
a(0) = 0 and a(n) = 3*binomial(4*n+7, n+1)/(4*n+7) - 12*binomial(4*n+3, n)/(4*n+3) for n > 0.
Comments