A335003 Triangle read by rows where the n-th row is the cycle trajectory of 2^n+1 in the divide-or-choose 2 rule.
3, 5, 10, 9, 36, 18, 17, 136, 68, 34, 33, 528, 264, 132, 66, 65, 2080, 1040, 520, 260, 130, 129, 8256, 4128, 2064, 1032, 516, 258, 257, 32896, 16448, 8224, 4112, 2056, 1028, 514, 513, 131328, 65664, 32832, 16416, 8208, 4104, 2052, 1026, 1025, 524800, 262400, 131200, 65600, 32800, 16400, 8200, 4100, 2050
Offset: 1
Examples
Triangle begins: 3; 5, 10; 9, 36, 18; 17, 136, 68, 34; 33, 528, 264, 132, 66; ...
Links
- Michel Marcus, Rows n = 1..100 of the triangle, flattened
- Hassan Sedaghat, Bounded Orbits of Quadratic Collatz-type Recursions, arXiv:2004.07357 [math.DS], 2020.
- Hassan Sedaghat, Dual Nature of Orbits of the Divide-or-Choose 2 Rule: A Quadratic Collatz-type Recursion, arXiv:2005.10712 [math.NT], 2020.
Programs
-
Mathematica
f[n_] := If[EvenQ[n], n/2, Binomial[n, 2]]; row[n_] := NestWhileList[f, n, f[#] != n &]; Join @@ Table[row[2^n + 1], {n, 1, 10}] (* Amiram Eldar, May 22 2020 *)
-
PARI
f(n) = if (n%2, binomial(n, 2), n/2); row(n) = my(m=2^n+1, v=vector(n)); v[1] = m; for (i=2, n, v[i] = f(v[i-1])); v;
Comments