A236435 Numerator of Product_{k=1..n-1} (1 + 1/prime(k)).
1, 3, 2, 12, 96, 1152, 2304, 41472, 165888, 3981312, 119439360, 3822059520, 7644119040, 321052999680, 1284211998720, 61642175938560, 3328677500682240, 199720650040934400, 399441300081868800, 1597765200327475200, 115039094423578214400, 230078188847156428800, 18406255107772514304000
Offset: 1
Examples
(1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has numerator a(5) = 96. Fractions begin with 1, 3/2, 2, 12/5, 96/35, 1152/385, 2304/715, 41472/12155, 165888/46189, 3981312/1062347, 119439360/30808063, 3822059520/955049953, ...
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Jonathan Sondow and Eric W. Weisstein, MathWorld: Mertens Theorem.
Crossrefs
Programs
-
Mathematica
Numerator@Table[ Product[ 1 + 1/Prime[ k], {k, 1, n-1}], {n, 1, 23}]
Comments