cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A038110 Numerator of frequency of integers with smallest divisor prime(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 16, 192, 3072, 55296, 110592, 442368, 13271040, 477757440, 19110297600, 802632499200, 1605264998400, 6421059993600, 12842119987200, 770527199232000, 50854795149312000, 3559835660451840000
Offset: 1

Views

Author

Keywords

Comments

Numerator of Product_{k=1..n-1} (1 - 1/prime(k)). - Jonathan Sondow, Jan 31 2014
Equivalently, denominator of Product_{k=1..n-1} prime(k)/(prime(k)-1) (cf. A060753). - N. J. A. Sloane, Apr 17 2015
Sum_{n>=1} a(n)/A038111(n) = 1. - Bob Selcoe, Jan 09 2015
a(n)/A038111(n) = (1/prime(n))*Product_{k=1..n-1} (1 - 1/prime(k)) ~ e^(-c)/ (prime(n)*log(prime(n))), where c=0.577... is the Euler constant. - Vladimir Shevelev, Jan 10 2015

Examples

			a(10) = 110592 = ( 1*2*4*6*10*12*16*18*22 ) / ( 2*3*5*11 ).
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) to a(N)
    Q:= 1: p:= 1:
    for n from 1 to N do
      p:= nextprime(p);
      A[n]:= numer(Q);
      Q:= Q * (1 - 1/p);
    end:
    seq(A[n],n=1..N); # Robert Israel, Jul 14 2014
  • Mathematica
    Numerator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 64} ]
    (* Wouter Meeussen *)
    Numerator@Table[ Product[ 1 - 1/Prime[ k ], {k, n-1}], {n, 64} ]
    (* Jonathan Sondow, Jan 31 2014 *)
    Numerator@
    Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
    Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 21}]
    (* Fred Daniel Kline, Jul 14 2014 *)
  • PARI
    a(n) = numerator(prod(k=1, n-1, (1 - 1/prime(k)))); \\ Michel Marcus, Aug 05 2019

Formula

a(n) = A005867(n-1) / A058250(n-1), where A058250(m) = gcd(A005867(m), A002110(m)). [Edited by Peter Munn, Jun 29 2025]
a(n)/A060753(n) = Product_{k=1..n-1} (1 - 1/prime(k)) ~ exp(-gamma)/log(n) as n->infinity (Mertens's 3rd theorem). - Jonathan Sondow, Jan 31 2014
a(n+1)/A038111(n+1) = a(n)/A038111(n) * (prime(n)-1)/prime(n+1). - Robert Israel, Jul 14 2014
a(n) = numerator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - Fred Daniel Kline, Jul 17 2014

A060753 Denominator of 1*2*4*6*...*(prime(n-1)-1) / (2*3*5*7*...*prime(n-1)).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1001, 17017, 323323, 676039, 2800733, 86822723, 3212440751, 131710070791, 5663533044013, 11573306655157, 47183480978717, 95993978542907, 5855632691117327, 392327390304860909
Offset: 1

Views

Author

Frank Ellermann, Apr 23 2001

Keywords

Comments

Equivalently, numerator of Product_{k=1..n-1} prime(k)/(prime(k)-1) (cf. A038110). - N. J. A. Sloane, Apr 17 2015
a(n)/A038110(n) is the supremum of the abundancy index sigma(k)/k = A000203(k)/k of the prime(n-1)-smooth numbers, for n>1 (Laatsch, 1986). - Amiram Eldar, Oct 26 2021
From Amiram Eldar, Jul 10 2022: (Start)
a(n)/A038110(n) is the sum of the reciprocals of the prime(n-1)-smooth numbers, for n>1.
a(n)/A038110(n) is the asymptotic mean of the number of prime(n-1)-smooth divisors of the positive integers, for n>1 (cf. A001511, A072078, A355583). (End)

Examples

			A038110(50)/ a(50) = 0.1020..., exp(-gamma)/log(229) = 0.1033...
1*2*4/(2*3*5) = 4/15 has denominator a(4) = 15. - _Jonathan Sondow_, Jan 31 2014
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 429.

Crossrefs

Programs

  • Magma
    [1] cat [Denominator((&*[NthPrime(k-1)-1:k in [2..n]])/(&*[NthPrime(k-1):k in [2..n]])):n in [2..20]]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Table[Denominator@ Product[EulerPhi@ Prime[i]/Prime@ i, {i, n}], {n, 0, 19}] (* Michael De Vlieger, Jan 10 2015 *)
    {1}~Join~Denominator@ FoldList[Times, Table[EulerPhi@ Prime[n]/Prime@ n, {n, 19}]] (* Michael De Vlieger, Jul 26 2016 *)
    b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
    Denominator@ Table[b[n], {n, 0, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
    Join[{1},Denominator[With[{nn=20},FoldList[Times,Prime[Range[nn]]-1]/FoldList[ Times,Prime[Range[nn]]]]]] (* Harvey P. Dale, Apr 17 2022 *)

Formula

a(n) = A002110(n) / gcd( A005867(n), A002110(n) ).
A038110(n) / a(n) ~ exp( -gamma ) / log( prime(n) ), Mertens's theorem for x = prime(n) = A000040(n).
A038110(n) / a(n) = A005867(n) / A002110(n). - corrected by Simon Tatham, Jul 26 2016
a(n) = A038111(n) / prime(n). - Vladimir Shevelev, Jan 10 2014
a(n) = A038110(n) + A161527(n-1). - Jamie Morken, Jun 19 2019

Extensions

Definition corrected by Jonathan Sondow, Jan 31 2014

A236436 Denominator of product_{k=1..n-1} (1 + 1/prime(k)).

Original entry on oeis.org

1, 2, 1, 5, 35, 385, 715, 12155, 46189, 1062347, 30808063, 955049953, 1859834119, 76253198879, 298080686527, 14009792266769, 742518990138757, 43808620418186663, 86204059532560853, 339745411098916303, 24121924188023057513, 47591904479072518877, 3759760453846728991283
Offset: 1

Views

Author

Jonathan Sondow, Feb 01 2014

Keywords

Examples

			(1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has denominator a(5) = 35.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.

Crossrefs

Programs

  • Mathematica
    Denominator@Table[Product[1 + 1/Prime[k], {k, 1, n - 1}], {n, 1, 23}]

Formula

A236435(n+1) / a(n+1) = A072045(n)/A072044(n) / A038110(n+1)/A060753(n+1) because 1+x = (1-x^2) / (1-x).
A236436(n) / a(n) = product_{k=1..n-1} (1 + 1/prime(k)) ~ (6/Pi^2)*exp(gamma)*log(n) as n -> infinity, by Mertens' theorem.

A072044 Numerator of Product{prime(k)^2/(prime(k)^2 - 1) | 0A072045.

Original entry on oeis.org

1, 4, 3, 25, 1225, 29645, 715715, 206841635, 14933966047, 718188003533, 86285158710179, 82920037520482019, 5974606913975783369, 10043314222393291843289, 1688189817927745147112851, 162139622078364740433577733, 35034630647548196605993834769
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 09 2002

Keywords

Comments

a(n)/A072045(n) -> (Pi^2)/6 (Leonhard Euler, 1748).

Examples

			For the first 3 primes: 2,3,5: (2^2/(2^2-1))*(3^2/(3^2-1))*(5^2/(5^2-1)) = (4/3)*(9/8)*(25/24) = (4*9*25)/(3*8*24) = 25/16, therefore a(3)=25;
a(10)/A072045(10)=86285158710179/52836150804480=1.63307049.
		

References

  • M. Sigg: "Pi" p. 191 in Lexikon der Mathematik, Band 4, Spektrum Verlag, 2002.

Crossrefs

Programs

  • Mathematica
    Numerator/@Rest[FoldList[Times,1,#/(#-1)&/@(Prime[Range[15]]^2)]] (* Harvey P. Dale, May 03 2011 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2024

A072045 Denominator of Product{prime(k)^2/(prime(k)^2 - 1) | 0A072044.

Original entry on oeis.org

1, 3, 2, 16, 768, 18432, 442368, 127401984, 9172942848, 440301256704, 52836150804480, 50722704772300800, 3652034743605657600, 6135418369257504768000, 1030750286035260801024000, 98952027459385036898304000, 21373637931227167970033664000
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 09 2002

Keywords

Comments

A072044(n)/a(n) -> (Pi^2)/6 (Leonhard Euler, 1748).

Examples

			For the first 3 primes: 2,3,5: (2^2/(2^2-1))*(3^2/(3^2-1))*(5^2/(5^2-1)) = (4/3)*(9/8)*(25/24) = (4*9*25)/(3*8*24) = 25/16, therefore a(3)=16;
A072044(9)/a(9)=718188003533/440301256704=1.631128671.
		

References

  • M. Sigg: "Pi" p. 191 in Lexikon der Mathematik, Band 4, Spektrum Verlag, 2002.

Crossrefs

Programs

  • Mathematica
    Rest[Denominator[FoldList[Times,1,(#^2/(#^2-1)&/@Prime[Range[20]])]]] (* Harvey P. Dale, Oct 14 2012 *)

Extensions

More terms from Harvey P. Dale, Oct 14 2012
a(0)=1 prepended by Alois P. Heinz, May 11 2024

A335004 Decimal expansion of 6*exp(gamma)/Pi^2.

Original entry on oeis.org

1, 0, 8, 2, 7, 6, 2, 1, 9, 3, 2, 6, 0, 9, 2, 4, 5, 8, 0, 1, 2, 2, 1, 8, 8, 0, 3, 8, 1, 9, 0, 9, 2, 6, 5, 7, 0, 1, 8, 4, 3, 0, 6, 6, 5, 5, 5, 8, 3, 6, 0, 0, 1, 4, 4, 1, 0, 2, 0, 3, 1, 9, 7, 4, 3, 5, 5, 1, 2, 8, 6, 1, 9, 2, 9, 8, 2, 9, 5, 0, 4, 3, 4, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.0827621932609245801221880381909265701843066555836...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.1, p. 31.
  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 100.

Crossrefs

Cf. A001620 (gamma), A013661 (Pi^2/6), A051377 (esigma), A059956 (6/Pi^2), A073004 (exp(gamma)), A246499 (Pi^2/(6*exp(gamma))).

Programs

  • Mathematica
    RealDigits[6*Exp[EulerGamma]/Pi^2, 10, 100][[1]]
  • PARI
    6*exp(Euler)/Pi^2 \\ Michel Marcus, May 19 2020

Formula

Equals limsup_{k->oo} esigma(k)/(k*log(log(k))), where esigma(k) is the sum of exponential divisors of k (A051377).
Equals A073004 * A059956 = A073004 / A013661 = 1 / A246499.
Equals lim_{k->oo} (1/log(k)) * Product_{p prime <= k} (1 + 1/p). - Amiram Eldar, Jul 09 2020

A382489 The number of unitary 5-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

Period 30: repeat [1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8].
In general, the sequence of the number of unitary prime(k)-smooth divisors of n, for k >= 1, is periodic with period A002110(k).
Decimal expansion of 135804580460138015713571358020/111111111111111111111111111111.
Continued fraction expansion of 808690/(525316 + sqrt(382161348866)) (with offset 0).

Crossrefs

The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), A382488 (k = 2), this sequence (k = 3).

Programs

  • Mathematica
    a[n_] := Product[If[Divisible[n, p], 2, 1], {p, {2, 3, 5}}]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> !((n % 30) % x) + 1, [2, 3, 5]))

Formula

Multiplicative with a(p^e) = 2 if p <= 5, and 1 otherwise.
a(n) = A034444(A355582(n)).
a(n) = A034444(n) if and only if n is 5-smooth (A051037).
a(n) = A355583(n) if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 12/5.
In general, the asymptotic mean of the number of unitary prime(k)-smooth divisors of n is A054640(k)/A002110(k) = A236435(k)/A236436(k).
Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * (1 + 1/5^s) * zeta(s).
In general, Dirichlet g.f. of the number of unitary prime(k)-smooth divisors of n is zeta(s) * Product_{p prime <= prime(k)} (1 + 1/p^s).
Showing 1-7 of 7 results.