cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072045 Denominator of Product{prime(k)^2/(prime(k)^2 - 1) | 0A072044.

Original entry on oeis.org

1, 3, 2, 16, 768, 18432, 442368, 127401984, 9172942848, 440301256704, 52836150804480, 50722704772300800, 3652034743605657600, 6135418369257504768000, 1030750286035260801024000, 98952027459385036898304000, 21373637931227167970033664000
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 09 2002

Keywords

Comments

A072044(n)/a(n) -> (Pi^2)/6 (Leonhard Euler, 1748).

Examples

			For the first 3 primes: 2,3,5: (2^2/(2^2-1))*(3^2/(3^2-1))*(5^2/(5^2-1)) = (4/3)*(9/8)*(25/24) = (4*9*25)/(3*8*24) = 25/16, therefore a(3)=16;
A072044(9)/a(9)=718188003533/440301256704=1.631128671.
		

References

  • M. Sigg: "Pi" p. 191 in Lexikon der Mathematik, Band 4, Spektrum Verlag, 2002.

Crossrefs

Programs

  • Mathematica
    Rest[Denominator[FoldList[Times,1,(#^2/(#^2-1)&/@Prime[Range[20]])]]] (* Harvey P. Dale, Oct 14 2012 *)

Extensions

More terms from Harvey P. Dale, Oct 14 2012
a(0)=1 prepended by Alois P. Heinz, May 11 2024

A236436 Denominator of product_{k=1..n-1} (1 + 1/prime(k)).

Original entry on oeis.org

1, 2, 1, 5, 35, 385, 715, 12155, 46189, 1062347, 30808063, 955049953, 1859834119, 76253198879, 298080686527, 14009792266769, 742518990138757, 43808620418186663, 86204059532560853, 339745411098916303, 24121924188023057513, 47591904479072518877, 3759760453846728991283
Offset: 1

Views

Author

Jonathan Sondow, Feb 01 2014

Keywords

Examples

			(1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has denominator a(5) = 35.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.

Crossrefs

Programs

  • Mathematica
    Denominator@Table[Product[1 + 1/Prime[k], {k, 1, n - 1}], {n, 1, 23}]

Formula

A236435(n+1) / a(n+1) = A072045(n)/A072044(n) / A038110(n+1)/A060753(n+1) because 1+x = (1-x^2) / (1-x).
A236436(n) / a(n) = product_{k=1..n-1} (1 + 1/prime(k)) ~ (6/Pi^2)*exp(gamma)*log(n) as n -> infinity, by Mertens' theorem.

A236435 Numerator of Product_{k=1..n-1} (1 + 1/prime(k)).

Original entry on oeis.org

1, 3, 2, 12, 96, 1152, 2304, 41472, 165888, 3981312, 119439360, 3822059520, 7644119040, 321052999680, 1284211998720, 61642175938560, 3328677500682240, 199720650040934400, 399441300081868800, 1597765200327475200, 115039094423578214400, 230078188847156428800, 18406255107772514304000
Offset: 1

Views

Author

Jonathan Sondow, Feb 01 2014

Keywords

Comments

A236436(n)/(a(n)*zeta(2)) is the asymptotic density of the prime(n-1)-rough squarefree numbers (squarefree numbers whose prime factors are all >= prime(n-1)) for n >= 2. E.g., A236436(2)/(a(2)*zeta(2)) = 2/(3*zeta(2)) = 4/Pi^2 (A185199) is the asymptotic density of the odd squarefree numbers (A056911), and A236436(3)/(a(3)*zeta(2)) = 1/(2*zeta(2)) = 3/Pi^2 (A104141) is the asymptotic density of the 5-rough squarefree numbers (A276378). - Amiram Eldar, Aug 26 2025

Examples

			(1 + 1/2)*(1 + 1/3)*(1 + 1/5)*(1 + 1/7) = 96/35 has numerator a(5) = 96.
Fractions begin with 1, 3/2, 2, 12/5, 96/35, 1152/385, 2304/715, 41472/12155, 165888/46189, 3981312/1062347, 119439360/30808063, 3822059520/955049953, ...
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979; Theorem 429.

Crossrefs

Programs

  • Mathematica
    Numerator@Table[ Product[ 1 + 1/Prime[ k], {k, 1, n-1}], {n, 1, 23}]

Formula

a(n+1) / A236436(n+1) = (A072045(n)/A072044(n)) / (A038110(n+1)/A060753(n+1)) because 1+x = (1-x^2) / (1-x).
a(n) / A236436(n) = Product_{k=1..n-1} (1 + 1/prime(k)) ~ (6/Pi^2)*exp(gamma)*log(n) as n -> infinity, by Mertens's theorem.

A385137 The sum of divisors d of n such that n/d is a 3-smooth number (A003586).

Original entry on oeis.org

1, 3, 4, 7, 5, 12, 7, 15, 13, 15, 11, 28, 13, 21, 20, 31, 17, 39, 19, 35, 28, 33, 23, 60, 25, 39, 40, 49, 29, 60, 31, 63, 44, 51, 35, 91, 37, 57, 52, 75, 41, 84, 43, 77, 65, 69, 47, 124, 49, 75, 68, 91, 53, 120, 55, 105, 76, 87, 59, 140, 61, 93, 91, 127, 65, 132
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), this sequence (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p < 5, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385138(n).
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 3, and p^e if p >= 5.
In general, the sum of divisors d of n such that n/d is q-smooth (not divisible by a prime larger than q) is multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= q, and p^e if p > q.
Dirichlet g.f.: zeta(s-1) / ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-smooth has Dirichlet g.f.: zeta(s-1) / Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (3/4)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-smooth has an average order c * n^2 / 2, where c = A072044(k-1)/A072045(k-1) for k >= 2.

A385138 The sum of divisors d of n such that n/d is a 5-rough number (A007310).

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 8, 8, 9, 12, 12, 12, 14, 16, 18, 16, 18, 18, 20, 24, 24, 24, 24, 24, 31, 28, 27, 32, 30, 36, 32, 32, 36, 36, 48, 36, 38, 40, 42, 48, 42, 48, 44, 48, 54, 48, 48, 48, 57, 62, 54, 56, 54, 54, 72, 64, 60, 60, 60, 72, 62, 64, 72, 64, 84, 72, 68, 72
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), this sequence (5-rough), A385139 (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := If[p > 3, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p > 3, (p^(e + 1) - 1)/(p - 1), p^e));}

Formula

a(n) = A064987(n)/A385137(n).
Multiplicative with a(p^e) = p^e if p <= 3, and (p^(e+1)-1)/(p-1) if p >= 5.
In general, the sum of divisors d of n such that n/d is q-rough (not divisible by a prime smaller than q) is multiplicative with a(p^e) = p^e if p <= q, and (p^(e+1)-1)/(p-1) if p > q.
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1 - 1/2^s) * (1 - 1/3^s)).
In general, the sum of divisors d of n such that n/d is q-rough has Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime <= q} (1 - 1/q^s).
Sum_{k=1..n} a(k) ~ (Pi^2/18)*n^2.
In general, the sum of divisors d of n such that n/d is prime(k)-rough has an average order c * n^2 / 2, where c = zeta(2) * A072045(k-1)/A072044(k-1) for k >= 2.

A372634 Numerators of the reduced fraction of all rational number representations (a/b, with a and b being integers) which can themselves be reduced by at least one common prime factor of at most prime(n).

Original entry on oeis.org

1, 1, 9, 457, 11213, 273347, 79439651, 5761023199, 277886746829, 33449007905699, 32197332748181219, 2322572170370125769, 3907895853135787075289, 657439531892484346088851, 63187594618979703535273733, 13660992716321028635960170769
Offset: 1

Views

Author

Brian Lee Burtner, May 08 2024

Keywords

Comments

The numerators of the fraction F(n) = a(n)/A072044(n) may be generated directly by use of inclusion-exclusion; e.g., 1/4 + 1/9 + 1/25 - 1/225 - 1/100 - 1/36 + 1/900 = 9/25.
Following Euler, they may also be generated via products.
a(n)/A072044(n) -> 1 - 6/Pi^2 (provable via Euler, see references). This value is the supremal proportion of all rational number representations a/b that are reducible by some common factor (or, more broadly: the proportion of all pairs of integers a,b that are not coprime).
A072045(n)/A072044(n) gives the complementary proportion of all rational number representations that are irreducible by any prime factor of at most A000040(n). This analogously converges to 6/Pi^2, the infimal proportion of all rational number representations a/b that are simply irreducible.

Examples

			For n=3, 1 - (3/4)*(8/9)*(24/25) = 9/25.
Exactly 9/25 of all rational number representations are reducible by at least one prime factor of at most 5.
		

References

  • Leonhard Euler, Introductio In Analysin Infinitorum Vol 1, 1748, p. 474.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*(1-1/ithprime(n)^2)) end:
    a:= n-> numer(1-b(n)):
    seq(a(n), n=1..16);  # Alois P. Heinz, May 11 2024
  • Mathematica
    a[n_]:=Numerator[1-Product[1-1/Prime[k]^2,{k,n}]]; Array[a,16] (* Stefano Spezia, May 11 2024 *)
  • PARI
    a(n) = numerator(1 - prod(k=1, n, (prime(k)^2-1)/prime(k)^2)); \\ Michel Marcus, May 08 2024

Formula

a(n) = numerator(1 - Product_{k=1..n} (1 - 1/prime(k)^2)).
Showing 1-6 of 6 results.