A372634 Numerators of the reduced fraction of all rational number representations (a/b, with a and b being integers) which can themselves be reduced by at least one common prime factor of at most prime(n).
1, 1, 9, 457, 11213, 273347, 79439651, 5761023199, 277886746829, 33449007905699, 32197332748181219, 2322572170370125769, 3907895853135787075289, 657439531892484346088851, 63187594618979703535273733, 13660992716321028635960170769
Offset: 1
Examples
For n=3, 1 - (3/4)*(8/9)*(24/25) = 9/25. Exactly 9/25 of all rational number representations are reducible by at least one prime factor of at most 5.
References
- Leonhard Euler, Introductio In Analysin Infinitorum Vol 1, 1748, p. 474.
Links
- Leonhard Euler, Introductio in Analysin Infinitorum, Vol 1.
- Wikipedia, Probability of coprimality.
Programs
-
Maple
b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*(1-1/ithprime(n)^2)) end: a:= n-> numer(1-b(n)): seq(a(n), n=1..16); # Alois P. Heinz, May 11 2024
-
Mathematica
a[n_]:=Numerator[1-Product[1-1/Prime[k]^2,{k,n}]]; Array[a,16] (* Stefano Spezia, May 11 2024 *)
-
PARI
a(n) = numerator(1 - prod(k=1, n, (prime(k)^2-1)/prime(k)^2)); \\ Michel Marcus, May 08 2024
Formula
a(n) = numerator(1 - Product_{k=1..n} (1 - 1/prime(k)^2)).
Comments