A335028 Decimal expansion of Pi*(exp(1/e) - 1)/2.
6, 9, 8, 4, 8, 2, 6, 4, 2, 7, 1, 7, 8, 8, 4, 2, 7, 2, 2, 6, 7, 2, 3, 0, 3, 5, 8, 4, 9, 7, 7, 1, 2, 4, 4, 4, 5, 6, 2, 8, 4, 8, 3, 6, 6, 9, 3, 2, 9, 2, 9, 7, 9, 3, 6, 9, 9, 3, 7, 2, 3, 6, 6, 2, 3, 3, 4, 5, 9, 0, 3, 0, 1, 2, 5, 4, 3, 6, 9, 0, 4, 3, 0, 0, 6, 9, 8
Offset: 0
Examples
0.69848264271788427226723035849771244456284836693292...
Links
- Harold P. Boas, Cauchy’s Residue Sore Thumb, The American Mathematical Monthly, Vol. 125, No. 1 (2018), pp. 16-28, preprint, arXiv:1701.04887v1 [math.HO], 2017.
- Augustin-Louis Cauchy, Mémoire sur les intégrales définies prises entre des limites imaginaires, Paris, 1825, p. 65, equation 24.
- Augustin-Louis Cauchy, Exercices de mathématiques, Paris, 1826, p. 108, equation 48.
Crossrefs
Programs
-
Mathematica
RealDigits[Pi*(Exp[1/E] - 1)/2, 10, 100][[1]]
-
PARI
Pi*(exp(1/exp(1)) - 1)/2 \\ Michel Marcus, May 20 2020
Formula
Equals Integral_{x=0..oo} (exp(cos(x)) * sin(sin(x)) * x /(x^2 + 1)) * dx.
Comments