cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335030 Numbers m that are not practical and have an abundancy index sigma(m)/m which is larger than that of any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 102, 350, 372, 1608, 3492, 6096, 10380, 44040, 100260, 180240, 425160, 1744560, 2425080, 5509980, 10048080, 23614920, 97639920, 396315360, 900229680, 2519017200, 3113704440, 12870562320, 52307529120
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

None of the terms are superabundant (A004394) since all the superabundant numbers are practical numbers (A005153).
The least term m that is k-abundant (having sigma(m)/m > k) for k = 2, 3, ... is A005101(14) = 70, A068403(896) = 44040, A068404(792087) = 3113704440, ...
What is the least 5-abundant number (A215264) that is not practical?

Examples

			The first 5 numbers that are not practical are m = 3, 5, 7, 9, 10. Their abundancy indices sigma(m)/m are 1.333..., 1.2, 1.142..., 1.444..., 1.8. The record values occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; rm = 1; Do[fct = FactorInteger[n]; r = Times@@((First/@fct^ (1+Last/@ fct)-1)/(First/@fct-1))/n; If[r > rm && !pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^5}]; seq

A362052 Practical numbers (A005153) that are abundant and have a record low value of abundancy index.

Original entry on oeis.org

12, 18, 20, 88, 104, 464, 1888, 1952, 29056, 29312, 29824, 30592, 30848, 32128, 127744, 128768, 130304, 521728, 522752, 8341504, 8353792, 8378368, 8382464, 134029312, 134045696, 134094848, 134193152, 2146926592, 2146992128, 8586723328, 8587902976, 8589082624
Offset: 1

Views

Author

Amiram Eldar, Apr 06 2023

Keywords

Comments

The abundancy index of an integer k is sigma(k)/k, where sigma is the sum-of-divisors function (A000203).
All the perfect numbers (A000396) are practical, and their abundancy index is 2.
If k is a deficient practical number, then sigma(k) = 2*k - 1 (i.e., k is an almost-perfect number, and the only known such numbers are the powers of 2, A000079), so the abundancy index of these numbers approaches to the limit 2 from below.
All the terms are either of the form 2^m*p, where p < 2^(m+1) - 1 is a prime, or of the form 2^m*p^2, where p = 2^(m+1) - 1 is a prime.
This sequence is infinite since the abundancy index of practical numbers can be arbitrarily close to 2 from above: if k = 2^m*p, and p < 2^(m+1) - 1 then k is practical, and its abundancy index is (2-1/2^m)*(1+1/p) < 2 + 2/p. Therefore, for all eps > 0, taking a prime p and m such that 2/eps < p < 2^(m+1) - 1 will yield a practical number k = 2^m*p with 2 < sigma(k)/k < 2 + eps.

Examples

			The abundancy indices of the first terms are 7/3 > 13/6 > 21/10 > 45/22 > 105/52 > 465/232 > 945/472 > ... > 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@ fct]), _?(# > 1 &)] == {};
    seq = {}; rm = 3; Do[fct = FactorInteger[n]; r = Times @@ (((First /@ fct)^(1 + Last /@ fct) - 1)/(First /@ fct - 1))/n; If[2 < r < rm && pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^6}]; seq
  • PARI
    lista(kmax) = {my(f, r, rm = 3, prd, prac); forstep(k = 2, kmax, 2, f = factor(k); r = sigma(f, -1); if(r > 2 && r < rm, prd = 1; prac = 1; for(i=2, #f~, prd *= sigma(f[i-1, 1]^f[i-1, 2]); if(f[i, 1] > 1 + prd, prac = 0; break)); if(prac, rm = r; print1(k, ", ")))); }
Showing 1-2 of 2 results.