cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335029 Numbers that are not practical (A237287) and have more divisors than any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 225, 315, 770, 1575, 2835, 3465, 10010, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815, 218243025, 509233725, 654729075, 1003917915
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The corresponding numbers of divisors are 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 192, 216, 240, 256, 288, 320, 384, 432, 480, 512, ...
Of the first 39 terms, 34 terms are also in A038547.
None of the terms are highly composite (A002182) since all the highly composite numbers are practical numbers (A005153).

Examples

			The first 5 numbers that are not practical are 3, 5, 7, 9, 10. Their numbers of divisors are 2, 2, 2, 3, 4. The record numbers of divisors are 2, 3 and 4 which occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; dm = 1; Do[fct = FactorInteger[n]; d = Times @@ (1 + Last/@ fct); If[d > dm && !pracQ[fct], dm = d; AppendTo[seq, n]], {n, 3, 10^5}]; seq

A362052 Practical numbers (A005153) that are abundant and have a record low value of abundancy index.

Original entry on oeis.org

12, 18, 20, 88, 104, 464, 1888, 1952, 29056, 29312, 29824, 30592, 30848, 32128, 127744, 128768, 130304, 521728, 522752, 8341504, 8353792, 8378368, 8382464, 134029312, 134045696, 134094848, 134193152, 2146926592, 2146992128, 8586723328, 8587902976, 8589082624
Offset: 1

Views

Author

Amiram Eldar, Apr 06 2023

Keywords

Comments

The abundancy index of an integer k is sigma(k)/k, where sigma is the sum-of-divisors function (A000203).
All the perfect numbers (A000396) are practical, and their abundancy index is 2.
If k is a deficient practical number, then sigma(k) = 2*k - 1 (i.e., k is an almost-perfect number, and the only known such numbers are the powers of 2, A000079), so the abundancy index of these numbers approaches to the limit 2 from below.
All the terms are either of the form 2^m*p, where p < 2^(m+1) - 1 is a prime, or of the form 2^m*p^2, where p = 2^(m+1) - 1 is a prime.
This sequence is infinite since the abundancy index of practical numbers can be arbitrarily close to 2 from above: if k = 2^m*p, and p < 2^(m+1) - 1 then k is practical, and its abundancy index is (2-1/2^m)*(1+1/p) < 2 + 2/p. Therefore, for all eps > 0, taking a prime p and m such that 2/eps < p < 2^(m+1) - 1 will yield a practical number k = 2^m*p with 2 < sigma(k)/k < 2 + eps.

Examples

			The abundancy indices of the first terms are 7/3 > 13/6 > 21/10 > 45/22 > 105/52 > 465/232 > 945/472 > ... > 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@ fct]), _?(# > 1 &)] == {};
    seq = {}; rm = 3; Do[fct = FactorInteger[n]; r = Times @@ (((First /@ fct)^(1 + Last /@ fct) - 1)/(First /@ fct - 1))/n; If[2 < r < rm && pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^6}]; seq
  • PARI
    lista(kmax) = {my(f, r, rm = 3, prd, prac); forstep(k = 2, kmax, 2, f = factor(k); r = sigma(f, -1); if(r > 2 && r < rm, prd = 1; prac = 1; for(i=2, #f~, prd *= sigma(f[i-1, 1]^f[i-1, 2]); if(f[i, 1] > 1 + prd, prac = 0; break)); if(prac, rm = r; print1(k, ", ")))); }
Showing 1-2 of 2 results.