A335029
Numbers that are not practical (A237287) and have more divisors than any smaller number that is not practical.
Original entry on oeis.org
3, 9, 10, 44, 70, 225, 315, 770, 1575, 2835, 3465, 10010, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815, 218243025, 509233725, 654729075, 1003917915
Offset: 1
The first 5 numbers that are not practical are 3, 5, 7, 9, 10. Their numbers of divisors are 2, 2, 2, 3, 4. The record numbers of divisors are 2, 3 and 4 which occur at 3, 9 and 10.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; dm = 1; Do[fct = FactorInteger[n]; d = Times @@ (1 + Last/@ fct); If[d > dm && !pracQ[fct], dm = d; AppendTo[seq, n]], {n, 3, 10^5}]; seq
A362052
Practical numbers (A005153) that are abundant and have a record low value of abundancy index.
Original entry on oeis.org
12, 18, 20, 88, 104, 464, 1888, 1952, 29056, 29312, 29824, 30592, 30848, 32128, 127744, 128768, 130304, 521728, 522752, 8341504, 8353792, 8378368, 8382464, 134029312, 134045696, 134094848, 134193152, 2146926592, 2146992128, 8586723328, 8587902976, 8589082624
Offset: 1
The abundancy indices of the first terms are 7/3 > 13/6 > 21/10 > 45/22 > 105/52 > 465/232 > 945/472 > ... > 2.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@ fct]), _?(# > 1 &)] == {};
seq = {}; rm = 3; Do[fct = FactorInteger[n]; r = Times @@ (((First /@ fct)^(1 + Last /@ fct) - 1)/(First /@ fct - 1))/n; If[2 < r < rm && pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^6}]; seq
-
lista(kmax) = {my(f, r, rm = 3, prd, prac); forstep(k = 2, kmax, 2, f = factor(k); r = sigma(f, -1); if(r > 2 && r < rm, prd = 1; prac = 1; for(i=2, #f~, prd *= sigma(f[i-1, 1]^f[i-1, 2]); if(f[i, 1] > 1 + prd, prac = 0; break)); if(prac, rm = r; print1(k, ", ")))); }
Showing 1-2 of 2 results.
Comments