A335034 Primitive triples, in nondecreasing order of perimeter, for integer-sided triangles with two perpendicular medians; each triple is in increasing order, and if perimeters coincide then increasing order of the smallest side.
13, 19, 22, 17, 22, 31, 25, 38, 41, 37, 58, 59, 41, 58, 71, 53, 62, 101, 61, 82, 109, 65, 79, 122, 85, 118, 149, 89, 121, 158, 101, 139, 178, 109, 122, 211, 113, 142, 209, 145, 178, 271, 145, 191, 262, 149, 229, 242, 157, 179, 302, 173, 269, 278, 181, 218, 341
Offset: 1
Examples
For 1st class, u/v > 3: (u,v) = (4,1), then (c,a,b) = (c,a',b') = (17,22,31) is the second triple and 22^2 + 31^2 = 5 * 17^2 = 1445. For 2nd class, 1 < u/v < 2: (u,v) = (3,2), then (c,a,b) = (c,b',a') = (13,19,22) is the first triple and 19^2 + 22^2 = 5 * 13^2 = 845.
References
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 3, 1993, page 253, 1993.
Links
- Annales Concours Général, Corrigé Concours Général 2007.
- Annales Concours Général, Sujet Concours Général 2007.
- The IMO Compendium, Problem 3, 25-th Canadian Mathematical Olympiad 1993.
- Maths Challenge, Perpendicular medians (Problem with picture).
- Mathematics Stack Exchange, Perpendicular medians (Proves that AB = GC).
- Mathematics Stack Exchange, Solving area of a triangle where medians are perpendicular.
Crossrefs
Programs
-
PARI
mycmp(x, y) = {my(xp = vecsum(x), yp = vecsum(y)); if (xp!=yp, return (xp-yp)); return (x[1] - y[1]);} lista(nn) = {my(vm = List(), vt); for (u=1, nn, for (v=1, nn, if (gcd(u, v) == 1, vt = 0; if ((u/v > 3) && ((u-3*v) % 5), vt = [2*(u^2-u*v-v^2), u^2+4*u*v-v^2, u^2+v^2]); if ((u/v > 1) && (u/v < 2) && ((u-2*v) % 5), vt = [2*(u^2+u*v-v^2), -u^2+4*u*v+v^2, u^2+v^2]); if (gcd(vt) == 1, listput(vm, vt));););); vecsort(apply(vecsort, Vec(vm));, mycmp);} \\ Michel Marcus, May 21 2020
Formula
There exist two disjoint classes of such triangles, obtained with two distinct families of formulas: let u > v > 0 , u and v with different parities, gcd(u,v) = 1; a' is the even side and b' the largest odd side.
1st class of triangles: (a',b',c) = (2*(u^2-uv-v^2), u^2+4*u*v-v^2, u^2+v^2) with u/v > 3 and 5 doesn't divide u-3v.
2nd class of triangles: (a',b',c) = (2*(u^2+uv-v^2), -u^2+4*u*v+v^2, u^2+v^2) with 1 < u/v < 2 and 5 doesn't divide u-2v.
Comments