A335037 a(n) is the number of divisors of n that are themselves divisible by the product of their digits.
1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 6, 1, 3, 4, 4, 1, 5, 1, 4, 3, 3, 1, 8, 2, 2, 3, 4, 1, 6, 1, 4, 3, 2, 3, 8, 1, 2, 2, 5, 1, 5, 1, 4, 5, 2, 1, 8, 2, 3, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 2, 5, 1, 3, 2, 4, 1, 10, 1, 2, 4, 3, 3, 4, 1, 5, 3, 2, 1, 7, 2, 2, 2, 5
Offset: 1
Examples
For n = 4, the divisors are 1, 2, 4 and they are all Zuckerman numbers, so a(4) = 3. For n = 14, the divisors are 1, 2, 7 and 14. Only 1, 2 and 7 are Zuckerman numbers, so a(14) = 3.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Giovanni Resta, Zuckerman numbers, Numbers Aplenty.
- Gérard Villemin, Nombres de Zuckerman, Types de nombres.
Crossrefs
Programs
-
Mathematica
zuckQ[n_] := (prodig = Times @@ IntegerDigits[n]) > 0&& Divisible[n, prodig]; a[n_] := Count[Divisors[n], ?(zuckQ[#] &)]; Array[a, 100] (* _Amiram Eldar, Jun 03 2020 *)
-
PARI
iszu(n) = my(p=vecprod(digits(n))); p && !(n % p); a(n) = sumdiv(n, d, iszu(d)); \\ Michel Marcus, Jun 03 2020
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A007602(n) = 3.26046... . - Amiram Eldar, Jan 01 2024
Comments