A335038 a(n) is the smallest number m with exactly n divisors that are Zuckerman numbers, or -1 if there is no such m.
1, 2, 4, 6, 18, 12, 84, 24, 168, 72, 144, 360, 432, 1080, 2016, 2160, 6048, 8064, 15120, 34272, 24192, 60480, 48384, 88704, 120960, 354816, 241920, 483840, 665280, 266112, 798336, 532224, 1596672, 1064448, 1862784, 2661120, 3725568, 5322240, 10644480, 7451136
Offset: 1
Examples
Of the six divisors of 18, five are Zuckerman numbers: 1, 2, 3, 6 and 9, and there is no smaller number with five Zuckerman divisors, hence a(5) = 18.
Links
- Giovanni Resta, Zuckerman numbers, Numbers Aplenty.
Programs
-
Mathematica
zuckQ[n_] := (prodig = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prodig]; numDiv[n_] := Count[Divisors[n], ?(zuckQ[#] &)]; mx = 50; n = 1; c = 0; v = Table[0, {mx}]; While[c < mx, i = numDiv[n]; If[i <= mx && v[[i]] == 0, c++; v[[i]] = n]; n++]; v (* _Amiram Eldar, Jun 03 2020 *)
-
PARI
iszu(n) = my(p=vecprod(digits(n))); p && !(n % p); a(n) = {my(k=1); while (sumdiv(k, d, iszu(d)) !=n, k++); k;} \\ Michel Marcus, Jun 03 2020
Extensions
More terms from Amiram Eldar, Jun 03 2020
Edited, added escape clause. - N. J. A. Sloane, Jun 04 2020
Comments