A335048 Minimum sum of primes (see Comments).
0, 3, 8, 13, 22, 31, 44, 57, 74, 91, 112, 133, 158, 183, 212, 241, 274, 307, 344, 381, 422, 463, 508, 553, 602, 651, 704, 757, 814, 871, 932, 993, 1058, 1123, 1192, 1261, 1334, 1407, 1484, 1561, 1642, 1723, 1808, 1893, 1982, 2071, 2164, 2257, 2354, 2451, 2552
Offset: 1
Keywords
Examples
For n = 4 there are 4 permutations: 1234, 1432, 3214, 3412. The one with the minimum sum of 13 (5+3+5) is 3214.
Programs
-
Mathematica
p[n_]:=Permutations[Range[n]];g[n_]:=Min[Total/@Select[Table[Table[ p[n][[j,i]]+p[n][[j,i+1]],{i,1,Length[p[n][[j]]]-1}],{j,1,Length[p[n]]}],AllTrue[#,PrimeQ]&]];g/@Range[7] (* slow, just for demo *) G[n_] := G[n] = Reap[Do[If[PrimeQ[i + j], Sow[i <-> j]], {i, n}, {j, i-1}]][[2, 1]]; a[n_] := Block[{p = 1 + Boole@OddQ@n, ep, s}, ep = Reverse@ SortBy[ Select[ Tuples[ Range[1, n, p], 2], #[[1]] > #[[2]] &], Total]; s = SelectFirst[ ep, FindHamiltonianPath[G[n], #[[1]], #[[2]]] != {} &, {}]; If[s == {}, 0, n (n + 1) - Total[s]]]; Array[a, 51] (* Giovanni Resta, Jun 05 2020 *)
Extensions
More terms from Giovanni Resta, Jun 05 2020
Comments