A335064 Let m = d*q + r be the Euclidean division of m by d. The terms m of this sequence satisfy that q, r, d are consecutive positive integer terms in a geometric progression with a noninteger common ratio > 1.
42, 110, 156, 210, 240, 342, 420, 462, 506, 600, 702, 812, 930, 1122, 1190, 1260, 1332, 1482, 1560, 1640, 1806, 1980, 2070, 2162, 2352, 2550, 2652, 2756, 2970, 3080, 3192, 3306, 3422, 3660, 3906, 4032, 4290, 4422, 4692, 4830, 4970, 5256, 5550, 5700, 5852, 6006, 6162
Offset: 1
Keywords
Examples
Examples for 42, 110 and 156 with consecutive ratios 3/2, 5/2, 4/3: 42 | 9 110 | 25 156 | 16 ----- ----- ----- 6 | 4 , 10 | 4 , 12 | 9 , then with consecutive ratios 2, 10 and 12: 42 | 12 110 | 100 156 | 144 ----- ----- ------ 6 | 3 , 10 | 1 , 12 | 1.
Links
Programs
-
Mathematica
Table[n*(n + 1), {n, Select[Range[80], PrimeNu[#] > 1 &]}] (* Amiram Eldar, May 23 2020 *)
-
PARI
apply(x->x*(x+1), select(x->!isprimepower(x), [2..80])) \\ Michel Marcus, May 23 2020
Comments