A335089 Decimal expansion of log(Pi^2/6).
4, 9, 7, 7, 0, 0, 3, 0, 2, 4, 7, 0, 7, 4, 5, 3, 4, 7, 4, 7, 4, 3, 7, 7, 3, 4, 4, 3, 2, 5, 4, 1, 5, 1, 5, 0, 5, 7, 1, 5, 9, 8, 9, 3, 3, 6, 4, 7, 6, 1, 8, 4, 3, 7, 1, 7, 1, 8, 7, 1, 7, 9, 9, 8, 1, 3, 3, 8, 7, 6, 2, 4, 5, 8, 1, 3, 4, 8, 4, 7, 7, 0, 8, 7, 7, 6, 7, 4, 5, 8, 7, 4, 0, 8, 2, 8, 6, 3, 9, 0, 7, 4, 0, 4, 8, 1
Offset: 0
Examples
Equals 1/(2^2) + 1/(3^2) + (1/(4^2))*(1/2) + 1/(5^2) + + 1/(7^2) + (1/(8^2))*(1/3) + ... = 0.4977003024707...
Links
- Mathematics Stack Exchange, Infinite series involving Von Mangoldt's function.
- Grant Sanderson, What makes the natural log "natural"?, 3Blue1Brown video (2020).
- Eric Weisstein's World of Mathematics, Mangold Function.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
Programs
-
Mathematica
RealDigits[Log[Pi^2/6], 10, 120][[1]] RealDigits[Sum[PrimeZetaP[2 k]/k, {k, 1, inf}], 10, 120][[1]]
-
PARI
log(Pi^2/6) \\ Michel Marcus, Sep 15 2020