A335102 Irregular triangle read by rows: consider the regular n-gon defined in A007678. T(n,k) (n >= 1, k >= 4+2*t where t>=0) is the number of non-boundary vertices in the n-gon at which k polygons meet.
0, 0, 0, 1, 5, 12, 1, 35, 40, 8, 1, 126, 140, 20, 0, 1, 330, 228, 60, 12, 0, 1, 715, 644, 112, 0, 0, 0, 1, 1365, 1168, 208, 0, 0, 0, 0, 1, 2380, 1512, 216, 54, 54, 0, 0, 0, 1, 3876, 3360, 480, 0, 0, 0, 0, 0, 0, 1, 5985, 5280, 660, 0, 0, 0, 0, 0, 0, 0, 1, 8855, 6144, 864, 264, 24, 0, 0, 0, 0, 0, 0, 12, 12650
Offset: 1
Examples
Table begins: 0; 0; 0; 1; 5; 12, 1; 35; 40, 8, 1; 126; 140, 20, 0, 1; 330; 228, 60, 12, 0, 1; 715; 644, 112, 0, 0, 0, 1; 1365; 1168, 208, 0, 0, 0, 0, 1; 2380; 1512, 216, 54, 54, 0, 0, 0, 1; 3876; 3360, 480, 0, 0, 0, 0, 0, 0, 1; 5985; 5280, 660, 0, 0, 0, 0, 0, 0, 0, 1; 8855; 6144, 864, 264, 24, 0, 0, 0, 0, 0, 0, 1; 12650; 11284, 1196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 17550; 15680, 1568, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 23751; 13800, 2250, 420, 180, 120, 30, 0, 0, 0, 0, 0, 0, 0, 1; 31465; 28448, 2464, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 40920; 37264, 2992, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 52360;
Links
- B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG]; some typos in the published version are corrected in the revisions from 2006.
- Scott R. Shannon, Image of the vertices for n=5.
- Scott R. Shannon, Image of the vertices for n=6.
- Scott R. Shannon, Image of the vertices for n=8.
- Scott R. Shannon, Image of the vertices for n=12.
- Scott R. Shannon, Image of the vertices for n=13.
- Scott R. Shannon, Image of the vertices for n=16.
- Scott R. Shannon, Image of the vertices for n=18.
- Scott R. Shannon, Image of the vertices for n=20.
- Scott R. Shannon, Image of the vertices for n=24.
- Scott R. Shannon, Image of the vertices for n=30.
- Index entries for sequences related to stained glass windows
Crossrefs
Formula
If n = 2t+1 is odd then the n-th row has a single term, T(2t+1, 2t+4) = binomial(2t+1,4) (these values are given in A053126).