A335109 Triangle read by rows: T(n,k) is the number of permutations of length n with each cycle of the permutation containing only elements that are identical (mod k), where 1 <= k <= n.
1, 2, 1, 6, 2, 1, 24, 4, 2, 1, 120, 12, 4, 2, 1, 720, 36, 8, 4, 2, 1, 5040, 144, 24, 8, 4, 2, 1, 40320, 576, 72, 16, 8, 4, 2, 1, 362880, 2880, 216, 48, 16, 8, 4, 2, 1, 3628800, 14400, 864, 144, 32, 16, 8, 4, 2, 1
Offset: 1
Examples
Triangle begins: 1; 2 1; 6 2 1; 24 4 2 1; 120 12 4 2 1; ... T(6,3) counts the 8 permutations of [6] where all cycle-mates are identical mod 3, namely, (1 4)(2 5)(3 6), (1 4)(2 5)(3)(6), (1 4)(2)(5)(3 6), (1)(4)(2 5)(3 6), (1 4)(2)(5)(3)(6), (1)(4)(2 5)(3)(6), (1)(4)(2)(5)(3 6) and (1)(2)(3)(4)(5)(6).
Links
- Per Alexandersson, Frether Getachew Kebede, Samuel Asefa Fufa, and Dun Qiu, Pattern-Avoidance and Fuss-Catalan Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.4.2.
Programs
-
Maple
seq(seq((ceil(n/k)!)^(n mod k)*(floor(n/k)!)^(k-(n mod k)), k=1..n), n=1..10);
-
Mathematica
Table[(Ceiling[n/k]!)^Mod[n, k]*(Floor[n/k]!)^(k - Mod[n, k]), {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Jun 28 2020 *)
Comments