cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335115 a(2*n) = 2*n - a(n), a(2*n+1) = 2*n + 1.

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 5, 9, 5, 11, 9, 13, 7, 15, 11, 17, 9, 19, 15, 21, 11, 23, 15, 25, 13, 27, 21, 29, 15, 31, 21, 33, 17, 35, 27, 37, 19, 39, 25, 41, 21, 43, 33, 45, 23, 47, 33, 49, 25, 51, 39, 53, 27, 55, 35, 57, 29, 59, 45, 61, 31, 63, 43, 65, 33, 67, 51, 69, 35, 71, 45, 73, 37, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], n - a[n/2], n]; Table[a[n], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(-1)^k x^(2^k)/(1 - x^(2^k))^2, {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := If[p == 2, (2^(e + 1) + (-1)^e)/3, p^e]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
  • PARI
    a(n) = my(k=valuation(n,2)); (n<<1 + (n>>k)*(-1)^k)/3; \\ Kevin Ryde, Oct 06 2020

Formula

G.f.: Sum_{k>=0} (-1)^k * x^(2^k) / (1 - x^(2^k))^2.
G.f. A(x) satisfies: A(x) = x / (1 - x)^2 - A(x^2).
Dirichlet g.f.: zeta(s-1) / (1 + 2^(-s)).
a(n) = Sum_{d|n} A154269(n/d) * d.
Sum_{k=1..n} a(k) ~ 2*n^2/5. - Vaclav Kotesovec, Jun 11 2020
Multiplicative with a(2^e) = A001045(e+1) and a(p^e) = p^e for e >= 0 and prime p > 2. - Werner Schulte, Oct 05 2020