A335118 Decimal expansion of the sum of the reciprocals of the perfect numbers.
2, 0, 4, 5, 2, 0, 1, 4, 2, 8, 3, 8, 9, 2, 6, 4, 3, 0, 1, 7, 8, 1, 3, 4, 4, 2, 9, 0, 9, 8, 4, 5, 5, 5, 7, 6, 6, 7, 7, 3, 1, 1, 4, 8, 9, 3, 5, 0, 7, 6, 3, 3, 9, 7, 0, 0, 6, 4, 2, 4, 8, 2, 4, 8, 9, 8, 6, 2, 2, 7, 4, 4, 0, 4, 5, 1, 3, 1, 9, 8, 5, 4, 0, 7, 0, 7, 6
Offset: 0
Examples
0.20452014283892643017813442909845557667731148935076...
References
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 244.
Links
- Jonathan Bayless and Dominic Klyve, Reciprocal sums as a knowledge metric: theory, computation, and perfect numbers, The American Mathematical Monthly, Vol. 120, No. 9 (2013), pp. 822-831, alternative link, preprint.
Programs
-
Mathematica
RealDigits[Sum[1/2^(p - 1)/(2^p - 1), {p, MersennePrimeExponent[Range[14]]}], 10, 100][[1]] RealDigits[Total[1/PerfectNumber[Range[15]]],10,120][[1]] (* Harvey P. Dale, Nov 25 2023 *)
Formula
Equals Sum_{k>=1} 1/A000396(k).
Comments