cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335123 Minimum part of the n-th integer partition in Abramowitz-Stegun order (sum/length/lex); a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 6, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 7, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 3, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 24 2020

Keywords

Examples

			Triangle begins:
  0
  1
  2 1
  3 1 1
  4 2 1 1 1
  5 2 1 1 1 1 1
  6 3 2 1 2 1 1 1 1 1 1
  7 3 2 1 2 1 1 1 1 1 1 1 1 1 1
  8 4 3 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
		

Crossrefs

Row lengths are A000041.
Partition minima of A334301.
The length of the same partition is A036043.
The Heinz number of the same partition is A334433.
The number of distinct parts in the same partition is A334440.
The maximum of the same partition is A334441.
The version for reversed partitions is A335124.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Min/@Sort[IntegerPartitions[n]]],{n,0,8}]

Formula

a(n) = A055396(A334433(n)).