A335124 Minimum part of the n-th reversed integer partition in Abramowitz-Stegun order; a(0) = 0.
0, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 1, 1, 1, 1, 6, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 7, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 2, 3, 4, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 3, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
Triangle begins: 0 1 2 1 3 1 1 4 1 2 1 1 5 1 2 1 1 1 1 6 1 2 3 1 1 2 1 1 1 1 7 1 2 3 1 1 1 2 1 1 1 1 1 1 1 8 1 2 3 4 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1
Links
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
Partition minima of A036036.
The length of the same partition is A036043.
The maximum of the same partition is A049085.
The number of distinct parts in the same partition is A103921.
The Heinz number of the same partition is A185974.
The version for non-reversed partitions is A335123.
Lexicographically ordered reversed partitions are A026791.
Partitions in (sum/length/colex) order are A036037.
Partitions in opposite Abramowitz-Stegun (sum/length/revlex) order are A334439.
Programs
-
Mathematica
Table[If[n==0,{0},Min/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}]
Comments