cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335126 A multiset whose multiplicities are the prime indices of n is inseparable.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 28, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 101, 102, 103, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The sequence of terms together with the corresponding multisets begins:
   3: {1,1}
   5: {1,1,1}
   7: {1,1,1,1}
  10: {1,1,1,2}
  11: {1,1,1,1,1}
  13: {1,1,1,1,1,1}
  14: {1,1,1,1,2}
  17: {1,1,1,1,1,1,1}
  19: {1,1,1,1,1,1,1,1}
  21: {1,1,1,1,2,2}
  22: {1,1,1,1,1,2}
  23: {1,1,1,1,1,1,1,1,1}
  26: {1,1,1,1,1,1,2}
  28: {1,1,1,1,2,3}
  29: {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The complement is A335127.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Inseparable factorizations are A333487.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{_,x_,x_,_}]&]=={}&]