cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A206256 Decimal expansion of Product_{p prime} (1 - 3/p^2).

Original entry on oeis.org

1, 2, 5, 4, 8, 6, 9, 8, 0, 9, 0, 5, 8, 0, 9, 2, 9, 8, 3, 3, 4, 4, 2, 7, 9, 9, 9, 0, 8, 9, 7, 5, 3, 5, 4, 0, 5, 7, 1, 9, 8, 4, 6, 8, 7, 2, 7, 8, 9, 2, 2, 8, 4, 6, 9, 4, 2, 2, 0, 4, 9, 6, 1, 0, 7, 4, 4, 0, 1, 0, 1, 9, 6, 1, 7, 1, 5, 4, 5, 8, 3, 7, 5, 4, 9, 1, 1, 1, 2, 2, 7, 1, 5, 7, 2, 8, 8, 3, 9, 9, 1, 7, 4, 7, 4, 6
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2012, based on a posting by Warren Smith to the Math Fun Mailing List, Feb 04 2012

Keywords

Comments

For a randomly selected number k, this is the probability that k, k+1, k+2 all are squarefree.

Examples

			0.1254869809058...
		

Crossrefs

Programs

  • Maple
    # See A175640 using efact := 1-3/p^2. - R. J. Mathar, Mar 22 2012
  • Mathematica
    $MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 3}, {0, -6}, m]; RealDigits[(1/4) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Oct 01 2019 *)
  • PARI
    prodeulerrat(1 - 3/p^2) \\ Amiram Eldar, Mar 16 2021

Extensions

More terms from Amiram Eldar, Oct 01 2019
More terms from Vaclav Kotesovec, Dec 17 2019

A330319 a(n) = Sum_{i=1..n} phi(i)*phi(i+1), where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

1, 3, 7, 15, 23, 35, 59, 83, 107, 147, 187, 235, 307, 355, 419, 547, 643, 751, 895, 991, 1111, 1331, 1507, 1667, 1907, 2123, 2339, 2675, 2899, 3139, 3619, 3939, 4259, 4643, 4931, 5363, 6011, 6443, 6827, 7467, 7947, 8451, 9291, 9771, 10299, 11311, 12047, 12719, 13559, 14199, 14967, 16215, 17151, 17871, 18831
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 32.

Crossrefs

Partial sums of A083542.

Programs

  • Mathematica
    phi = EulerPhi[Range[56]]; Accumulate[Most[phi] * Rest[phi]] (* Amiram Eldar, Mar 05 2020 *)
  • PARI
    a(n) = sum(i=1, n, eulerphi(i)*eulerphi(i+1)); \\ Michel Marcus, Mar 05 2020

Formula

a(n) ~ (c/3) * n^3 + O(n^2*log(n)^2), where c = Product_{p prime}(1 - 2/p^2) (A065474). - Amiram Eldar, Mar 05 2020
Showing 1-2 of 2 results.