cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335135 Number of composite numbers between prime(n)^2 and prime(n + 1)^2 - 1.

Original entry on oeis.org

3, 11, 18, 57, 39, 98, 61, 141, 265, 104, 351, 268, 148, 314, 520, 594, 208, 678, 486, 258, 806, 573, 918, 1325, 703, 366, 753, 390, 788, 3006, 933, 1443, 503, 2581, 542, 1666, 1734, 1192, 1842, 1917, 644, 3364, 691, 1416, 717, 4457, 4729
Offset: 1

Views

Author

Dimitris Valianatos, May 24 2020

Keywords

Examples

			For n = 1, prime(1) = 2 and prime(2) = 3. So the composite numbers between 2^2 = 4 and 3^2 - 1 = 9 - 1 = 8 are 4, 6, and 8, so a(1) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,q;
    p:= ithprime(n); q:= nextprime(p);
    q^2 - p^2 - numtheory:-pi(q^2)+numtheory:-pi(p^2)
    end proc:
    map(f, [$1..50]); # Robert Israel, Jun 24 2020
  • Mathematica
    Array[#1 - #2 - (PrimePi@ #1 - PrimePi@ #2) & @@ {Prime[# + 1]^2, Prime[#]^2} &, 47] (* Michael De Vlieger, May 24 2020 *)
  • PARI
    forprime(n = 2, 220, s = 0; forcomposite(k = n^2, nextprime(n + 1)^2 - 1, s++); print1(s", "))

Formula

a(n) = prime(n + 1)^2 - prime(n)^2 - (pi(prime(n + 1)^2) - pi(prime(n)^2)).
a(n) = A053683(n+1) - A053683(n). - Michel Marcus, Aug 27 2022