cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335225 Partitions of a stronger form of Goldbach Conjecture: the number of decompositions of an even number 2n into the sum of two odd prime numbers p and q with 0 <= q-p < n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 2, 1, 2, 4, 2, 2, 3, 1, 2, 3, 2, 2, 2, 1, 3, 4, 1, 2, 5, 1, 2, 3, 2, 3, 4, 3, 2, 4, 3, 3, 5, 2, 2, 6, 2, 2, 5, 1, 3, 4, 3, 2, 4, 4, 4, 6, 4, 3, 7, 2, 4, 6, 2, 4, 5, 2, 3, 5, 4, 3, 5, 3, 3, 6, 2, 4, 6, 2, 4, 5, 2, 3, 6, 3
Offset: 1

Views

Author

Ya-Ping Lu, May 27 2020

Keywords

Comments

The Goldbach conjecture states that any even number 2n >= 6 can be written as the sum of two unordered odd prime numbers p and q, or 2n = p + q, where 0 <= q-p < 2n.
It appears that the Goldbach conjecture still holds if the span of q-p allowed is reduced by half, from [0, 2n) to [0, n). This stronger form of the Goldbach conjecture is true if a(n) >= 1 for n >= 3. Any further reduction of the q-p span from [0, n) to [0, m), with m < n, results in the number of prime decompositions for at least one of the even numbers being zero.
The values of a(n) and the Goldbach partitions G(n) for n up to 100000 are given in the LINKS section.
Note that a(n) listed above is for the decomposition of even numbers 2n >=6 into unordered odd primes. The sequence for the decomposition of even number 2n >=4 into unordered primes is the same as a(n), except that the second term of the sequence becomes 1.

Examples

			a(1)=0 because 2*1 cannot be written as the sum of two primes.
a(2)=0. Although 2*2 can be written as 2+2, 2 is not an odd prime.
a(3)=1 because 2*3 = 3+3.
a(4)=1 because 2*4 = 3+5.
a(5)=2 because 2*5 = 5+5 and 3+7.
a(6)=1 because 2*6 = 5+7.
a(7)=1 because 2*7 = 7+7. 3+11 is not a valid partition as 11-3 > 7.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(nb=0, m=2*n, q); forprime(p=3, m, if (isprime(q=m-p) && (q%2) && ((q-p)>=0) && ((q-p)Michel Marcus, May 28 2020