A335234 Number of partitions of k_n into two parts (s,t) such that k_n | s*t, where k_n is the n-th nonsquarefree number (A013929).
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 4, 1, 3, 2, 1, 2, 4, 1, 1, 1, 1, 2, 3, 1, 5, 1, 3, 2, 1, 1, 1, 5, 1, 2, 1, 4, 1, 1, 1, 1, 6, 3, 1, 2, 1, 1, 1, 2, 4, 1, 1, 6, 1, 1, 2, 2, 3, 1, 1, 1, 4, 7, 1, 5, 1, 1, 2, 1, 3, 1, 2, 7, 1, 1, 1, 1, 2, 5, 4
Offset: 1
Keywords
Examples
a(4) = 1; The 4th nonsquarefree number, A013929(4) = 12 has 6 partitions into two parts: (11,1), (10,2), (9,3), (8,4), (7,5) and (6,6) with corresponding products 11, 20, 27, 32, 35, 36. A013929(4) = 12 only divides the product 36, so a(4) = 1. a(5) = 2; The 5th nonsquarefree number, A013929(5) = 16 has 8 partitions into two parts: (15,1), (14,2), (13,3), (12,4), (11,5), (10,6), (9,7) and (8,8) with corresponding products 15, 28, 39, 48, 55, 60, 63 and 64. A013929(5) = 16 divides two of these products, 48 and 64, so a(5) = 2.
Crossrefs
Cf. A013929.
Programs
-
Mathematica
Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[n/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[n/2]}], {}], {n, 300}] // Flatten
Comments