A335236 Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.
0, 10, 21, 22, 26, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153, 154, 156, 160, 162, 163, 164
Offset: 1
Keywords
Examples
The sequence together with the corresponding compositions begins: 0: () 74: (3,2,2) 109: (1,2,1,2,1) 10: (2,2) 76: (3,1,3) 110: (1,2,1,1,2) 21: (2,2,1) 81: (2,4,1) 117: (1,1,2,2,1) 22: (2,1,2) 82: (2,3,2) 118: (1,1,2,1,2) 26: (1,2,2) 84: (2,2,3) 122: (1,1,1,2,2) 34: (4,2) 85: (2,2,2,1) 130: (6,2) 36: (3,3) 86: (2,2,1,2) 136: (4,4) 40: (2,4) 87: (2,2,1,1,1) 138: (4,2,2) 42: (2,2,2) 88: (2,1,4) 139: (4,2,1,1) 43: (2,2,1,1) 90: (2,1,2,2) 141: (4,1,2,1) 45: (2,1,2,1) 91: (2,1,2,1,1) 142: (4,1,1,2) 46: (2,1,1,2) 93: (2,1,1,2,1) 146: (3,3,2) 53: (1,2,2,1) 94: (2,1,1,1,2) 147: (3,3,1,1) 54: (1,2,1,2) 98: (1,4,2) 148: (3,2,3) 58: (1,1,2,2) 100: (1,3,3) 149: (3,2,2,1) 69: (4,2,1) 104: (1,2,4) 150: (3,2,1,2) 70: (4,1,2) 106: (1,2,2,2) 153: (3,1,3,1) 73: (3,3,1) 107: (1,2,2,1,1) 154: (3,1,2,2)
Links
Crossrefs
The version for prime indices is A316438.
The version for binary indices is A335237.
The complement is A335235.
The version with singletons allowed is A335239.
Binary indices are pairwise coprime or a singleton: A087087.
The version counting partitions is 1 + A335240.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&]
Comments