A335237 Numbers whose binary indices are not a singleton nor pairwise coprime.
0, 10, 11, 14, 15, 26, 27, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 90, 91, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116
Offset: 1
Keywords
Examples
The sequence of terms together with their binary expansions and binary indices begins: 0: 0 ~ {} 10: 1010 ~ {2,4} 11: 1011 ~ {1,2,4} 14: 1110 ~ {2,3,4} 15: 1111 ~ {1,2,3,4} 26: 11010 ~ {2,4,5} 27: 11011 ~ {1,2,4,5} 30: 11110 ~ {2,3,4,5} 31: 11111 ~ {1,2,3,4,5} 34: 100010 ~ {2,6} 35: 100011 ~ {1,2,6} 36: 100100 ~ {3,6} 37: 100101 ~ {1,3,6} 38: 100110 ~ {2,3,6} 39: 100111 ~ {1,2,3,6} 40: 101000 ~ {4,6} 41: 101001 ~ {1,4,6} 42: 101010 ~ {2,4,6} 43: 101011 ~ {1,2,4,6} 44: 101100 ~ {3,4,6}
Crossrefs
The version for prime indices is A316438.
The version for standard compositions is A335236.
Numbers whose binary indices are pairwise coprime or a singleton: A087087.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[0,100],!(Length[bpe[#]]==1||CoprimeQ@@bpe[#])&]
Comments