A335256 Irregular triangle read by rows: row n gives the coefficients of the n-th complete exponential Bell polynomial B_n(x_1, x_2, ..., x_n) with monomials sorted into standard order.
1, 1, 1, 1, 3, 1, 1, 6, 4, 3, 1, 1, 10, 10, 15, 5, 10, 1, 1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1, 1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1, 1, 28, 56, 210, 70, 560, 420, 56, 420, 280, 840, 105, 28, 168, 280, 210, 280, 8, 28, 56, 35, 1
Offset: 1
Examples
The first few complete exponential Bell polynomials are: (1) x[1]; (2) x[1]^2 + x[2]; (3) x[1]^3 + 3*x[1]*x[2] + x[3]; (4) x[1]^4 + 6*x[1]^2*x[2] + 4*x[1]*x[3] + 3*x[2]^2 + x[4]; (5) x[1]^5 + 10*x[1]^3*x[2] + 10*x[1]^2*x[3] + 15*x[1]*x[2]^2 + 5*x[1]*x[4] + 10*x[2]*x[3] + x[5]; (6) x[1]^6 + 15*x[1]^4*x[2] + 20*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 15*x[1]^2*x[4] + 60*x[1]*x[2]*x[3] + 15*x[2]^3 + 6*x[1]*x[5] + 15*x[2]*x[4] + 10*x[3]^2 + x[6]. (7) x[1]^7 + 21*x[1]^5*x[2] + 35*x[1]^4*x[3] + 105*x[1]^3*x[2]^2 + 35*x[1]^3*x[4] + 210*x[1]^2*x[2]*x[3] + 105*x[1]*x[2]^3 + 21*x[1]^2*x[5] + 105*x[1]*x[2]*x[4] + 70*x[1]*x[3]^2 + 105*x[2]^2*x[3] + 7*x[1]*x[6] + 21*x[2]*x[5] + 35*x[3]*x[4] + x[7]. ... The first few rows of the triangle are 1; 1, 1; 1, 3, 1; 1, 6, 4, 3, 1; 1, 10, 10, 15, 5, 10, 1; 1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1; 1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 134 and 307-310.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 2, Section 8 and table on page 49.
Links
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Peter Luschny, The Bell transform.
Programs
-
Maple
triangle := proc(numrows) local E, s, Q; E := add(x[i]*t^i/i!, i=1..numrows); s := series(exp(E), t, numrows+1); Q := k -> sort(expand(k!*coeff(s, t, k))); seq(print(coeffs(Q(k))), k=1..numrows) end: triangle(8); # Peter Luschny, May 30 2020
-
Mathematica
imax = 10; polys = (CoefficientList[Exp[Sum[x[i]*t^i/i!, {i, 1, imax}]] + O[t]^imax // Normal, t]*Range[0, imax-1]!) // Rest; Table[MonomialList[polys[[i]], Array[x, i], "DegreeLexicographic"] /. x[] -> 1, {i, 1, imax-1}] // Flatten (* _Jean-François Alcover, Jun 02 2024 *)
-
PARI
/* It produces the partial exponential Bell polynomials in decreasing degree, but the monomials are not necessarily in standard order. */ Bell(n,k)= { my(x, v, dv, var = i->eval(Str("X", i))); v = vector(n, i, if (i==1, 'E, var(i-1))); dv = vector(n, i, if (i==1, 'X*var(1)*'E, var(i))); x = diffop('E, v, dv, n) / 'E; if (k < 0, subst(x,'X, 1), polcoeff(x, k, 'X)); }; row(n) = for(k=1, n, print1("[", Bell(n, n+1-k), "]", ","))
Formula
B_n(x[1], ..., x[n]) = Sum_{k=1..n} B_{n,k}(x[1], ..., x[n-k+1]), where B_{n,k} = B_{n,k}(x[1], ..., x[n-k+1]) are the partial exponential Bell polynomials that satisfy B_{n,1} = x[n] for n >= 1 and B_{n,k} = (1/k)*Sum_{m=k-1..n-1} binomial(n,m)*x[n-m]*B_{m,k-1} for n >= 2 and k = 2..n.
E.g.f.: Exp(Sum_{i >= 1} x_i*t^i/i!) = 1 + Sum_{n >= 1} B_n(x_1, x_2, ..., x_n)*t^n/n! [Comtet, p. 134, Eq. [3b]].
Comments