cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335260 Irregular triangle S(n,k) = numerators of k*A002110(n)/A005867(n) for 1 <= k <= A005867(n).

Original entry on oeis.org

1, 2, 3, 6, 15, 15, 45, 15, 75, 45, 105, 30, 35, 35, 105, 35, 175, 105, 245, 35, 315, 175, 385, 105, 455, 245, 525, 70, 595, 315, 665, 175, 735, 385, 805, 105, 875, 455, 945, 245, 1015, 525, 1085, 140, 1155, 595, 1225, 315, 1295, 665, 1365, 175, 1435, 735, 1505
Offset: 1

Views

Author

Keywords

Comments

Alternatively, numerators of k*A060753(n)/A038110(n) for 1 <= k <= A005867(n).

Examples

			Table begins:
     1;
     2;
     3, 6;
    15, 15, 45, 15, 75, 45, 105, 30;
    ...
Row n = 4 contains the numerators of (35/8)*k for 1 <= k <= A005867(4): 35/8, 35/4, 105/8, 35/2, 175/8, 105/4, 245/8, 35, 315/8, 175/4, 385/8, 105/2, 455/8, 245/4, 525/8, 70, 595/8, 315/4, 665/8, 175/2, 735/8, 385/4, 805/8, 105, 875/8, 455/4, 945/8, 245/2, 1015/8, 525/4, 1085/8, 140, 1155/8, 595/4, 1225/8, 315/2, 1295/8, 665/4, 1365/8, 175, 1435/8, 735/4, 1505/8, 385/2, 1575/8, 805/4, 1645/8, 210.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[P Range[EulerPhi[P]]/EulerPhi[P]], {P, FoldList[Times, Prime@ Range@ 5]}] (* or, more efficiently for larger datasets: *)
    Flatten@ Block[{nn = 7, s, t}, s = Array[Numerator@ Product[1 - 1/Prime[k], {k, # - 1}] &, nn]; t = Nest[Append[#, #[[-1]] (Prime[Length@ #] - 1)]&, {1}, nn]; u = Denominator@ Nest[Append[#, #[[-1]] + (1 - #[[-1]])/Prime[Length@ #]] &, {0}, nn]; MapIndexed[Function[{m, D, i},  u[[i]]*Range[t[[i]]]/ PadRight[{}, t[[i]], ReplacePart[ConstantArray[0, m], Flatten@ Map[Function[d, Map[# -> m/d &, m/d Select[Range[d], GCD[#, d] == 1 &]]], D]]]] @@ {#1, Divisors@ #1, First[#2]} &, s]]
    (* or, generate a single numerator of S(n,k): *)
    f[n_, k_] := #2 k/GCD[#1, Mod[k, #1]] & @@ {Numerator@ Product[1 - 1/Prime[i], {i, n - 1}], Denominator@ Last@ Nest[Append[#, #[[-1]] + (1 - #[[-1]])/Prime[Length@ #]] &, {0}, n - 1]}

Formula

S(n,k) = k*A060753(n)/GCD(k (mod m), m) for m = A038110(n).
Row lengths: A005867(n).
Least numerator in row n: A060753(n), all numerators are multiples j*A060753(n).