A335264
a(n) = Numerator(-4*n^2*Zeta(1 - n)^2*(1 - 2^n)) for n >= 1, a(0) = 0.
Original entry on oeis.org
0, 1, 1, 0, 1, 0, 1, 0, 17, 0, 775, 0, 477481, 0, 267589, 0, 3362251073, 0, 421424697891, 0, 38751520678991, 0, 44386209501802003, 0, 228891128457907983257, 0, 1636462395711601387189, 0, 348063222218272291910609213, 0, 3710225622968600411572814809525
Offset: 0
Rational sequence starts: 0, 1, 1/3, 0, 1/15, 0, 1/7, 0, 17/15, 0, 775/33, 0, 477481/455, ...
A335538
a(n) = numerator(-4*n^2*zeta(1 - n)*zeta(n)*(1 - 2^(1 - n)) / Pi^n) for n >= 2, a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 1, 0, -7, 0, 31, 0, -127, 0, 365, 0, -977403607, 0, 57337, 0, -61240067209, 0, 252221719530919, 0, -15984987035583127, 0, 2841046127487821, 0, -468654557583574838590567, 0, 188822581306893585883, 0, -220710643004244238794643249, 0, 1594135539680034434970146279285311
Offset: 0
Rational sequence starts: 0, 1, 1/9, 0, -7/1350, 0, 31/52920, 0, -127/1134000, 0, 365/11290752, ...
-
a := s -> `if`(s=1 or s=0, s, -4*s^2*Zeta(1 - s)*Zeta(s)*(1 - 2^(1 - s)) / Pi^s):
seq(numer(a(s)), s = 0..34);
A335539
a(n) = denominator(-4*n^2*zeta(1 - n)*zeta(n)*(1 - 2^(1 - n)) / Pi^n) for n >= 2, a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 9, 1, 1350, 1, 52920, 1, 1134000, 1, 11290752, 1, 74373979680000, 1, 8006169600, 1, 12147360825600000, 1, 56625794240311296000, 1, 3311787858630451200000, 1, 451287524451778560000, 1, 48168123888308960600064000000, 1, 10738530029998374912000000, 1
Offset: 0
Rational sequence starts: 0, 1, 1/9, 0, -7/1350, 0, 31/52920, 0, -127/1134000, 0, 365/11290752, ...
-
a := s -> `if`(s = 1 or s = 0, s, -4*s^2*Zeta(1 - s)*Zeta(s)*(1 - 2^(1 - s))/Pi^s):
seq(denom(a(s)), s = 0..34);
Showing 1-3 of 3 results.