cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335294 a(n) = pi(n) - pi(Sum_{k=1..n-1} a(k)) with a(1) = 1, where pi() is the prime counting function A000720.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1
Offset: 1

Views

Author

Altug Alkan, Jun 01 2020

Keywords

Comments

Alkan, Booker, & Luca prove that every nonnegative integer appears infinitely often.

Crossrefs

Cf. A000720, A335337 (when k appears), A334714 (partial sums).

Programs

  • Maple
    A[1]:= 1: S:= 1:
    for n from 2 to 100 do
      A[n]:= numtheory:-pi(n) - numtheory:-pi(S);
      S:= S + A[n];
    od:
    seq(A[n],n=1..100); # Robert Israel, Jun 01 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = PrimePi[n] - PrimePi[Sum[a[k], {k, 1, n-1}]]; Array[a, 100] (* Amiram Eldar, Jun 01 2020 *)
    upto[nn_] := Reap[Block[{i=0, is=0, sp=2, p=2, s=1}, Sow@ 1; Do[ If[n == p, i++; p = NextPrime@ p]; Sow[i - is]; s += i - is; While[ s >= sp, is++; sp = NextPrime@ sp], {n, 2, nn}]]] [[2, 1]]; upto[97] (* Giovanni Resta, Jun 02 2020 *)
  • PARI
    a=vector(10^2); a[1] = 1; for(n=2, #a, a[n] = primepi(n) - primepi(sum(k=1, n-1, a[k]))); a
    
  • PARI
    first(n) = {my(res = vector(n), pp = 0, s = 1, ps=0); primepivec = vector(n); forprime(p = 2, n, primepivec[p] = 1; ); for(i = 2, n, primepivec[i] += primepivec[i-1] ); res[1] = 1; for(i = 2, n, if(isprime(i), pp++); res[i] = pp - ps; s+=(pp-ps); ps = primepivec[s]; ); res } \\ David A. Corneth, Jun 01 2020
    
  • Python
    from sympy import primepi
    A = [1]
    S = 1
    for n in range(1, 101):
        A += [primepi(n+1) - primepi(S), ]
        S += A[n]
    print(A) # Indranil Ghosh, Jun 21 2020, after Maple