A335308 Number of permutations p of [n] such that the sequence of ascents and descents of p is encoded by the 0's and 1's, respectively, in the binary expansion of n (read from right to left and using leading 0's if necessary).
1, 0, 0, 1, 3, 16, 26, 20, 69, 370, 1006, 945, 1266, 3015, 2365, 1001, 4367, 24736, 76960, 69615, 138397, 322944, 286824, 133056, 159391, 546504, 978054, 674245, 531530, 957320, 495495, 142506, 906191, 5537808, 18828096, 16231039, 37000909, 81351936, 71761536
Offset: 0
Examples
a(0) = 1: (), the empty permutation. a(3) = 1: 321 (down, down). a(4) = 3: 1243, 1342, 2341 (up, up, down). a(5) = 16: 21435, 21534, 31425, 31524, 32415, 32514, 41325, 41523, 42315, 42513, 43512, 51324, 51423, 52314, 52413, 53412 (down, up, down, up). a(6) = 26: 143256, 153246, 154236, 163245, 164235, 165234, 243156, 253146, 254136, 263145, 264135, 265134, 342156, 352146, 354126, 362145, 364125, 365124, 452136, 453126, 462135, 463125, 465123, 562134, 563124, 564123 (up, down, down, up, up). a(7) = 20: 4321567, 5321467, 5421367, 5431267, 6321457, 6421357, 6431257, 6521347, 6531247, 6541237, 7321456, 7421356, 7431256, 7521346, 7531246, 7541236, 7621345, 7631245, 7641235, 7651234 (down^3, up^3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4095
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, `if`(t=0, 1, 0), `if`(irem(t, 2)=0, add(b(u-j, o+j-1, iquo(t, 2)), j=1..u), add(b(u+j-1, o-j, iquo(t, 2)), j=1..o))) end: a:= n-> b(n, 0, 2*n): seq(a(n), n=0..42);