cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335308 Number of permutations p of [n] such that the sequence of ascents and descents of p is encoded by the 0's and 1's, respectively, in the binary expansion of n (read from right to left and using leading 0's if necessary).

Original entry on oeis.org

1, 0, 0, 1, 3, 16, 26, 20, 69, 370, 1006, 945, 1266, 3015, 2365, 1001, 4367, 24736, 76960, 69615, 138397, 322944, 286824, 133056, 159391, 546504, 978054, 674245, 531530, 957320, 495495, 142506, 906191, 5537808, 18828096, 16231039, 37000909, 81351936, 71761536
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2020

Keywords

Examples

			a(0) = 1: (), the empty permutation.
a(3) = 1: 321 (down, down).
a(4) = 3: 1243, 1342, 2341 (up, up, down).
a(5) = 16: 21435, 21534, 31425, 31524, 32415, 32514, 41325, 41523, 42315, 42513, 43512, 51324, 51423, 52314, 52413, 53412 (down, up, down, up).
a(6) = 26: 143256, 153246, 154236, 163245, 164235, 165234, 243156, 253146, 254136, 263145, 264135, 265134, 342156, 352146, 354126, 362145, 364125, 365124, 452136, 453126, 462135, 463125, 465123, 562134, 563124, 564123 (up, down, down, up, up).
a(7) = 20: 4321567, 5321467, 5421367, 5431267, 6321457, 6421357, 6431257, 6521347, 6531247, 6541237, 7321456, 7421356, 7431256, 7521346, 7531246, 7541236, 7621345, 7631245, 7641235, 7651234 (down^3, up^3).
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, `if`(t=0, 1, 0),
         `if`(irem(t, 2)=0, add(b(u-j, o+j-1, iquo(t, 2)), j=1..u),
          add(b(u+j-1, o-j, iquo(t, 2)), j=1..o)))
        end:
    a:= n-> b(n, 0, 2*n):
    seq(a(n), n=0..42);

Formula

a(n) = A060351(n,n).
a(2^n-1) = binomial(2^n-2,n).
a(2^n) = binomial(2^n,n+1)-1.