cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335312 A(n, k) = k! [x^k] exp(2*x)*(y*sinh(x*y) + cosh(x*y)) and y = sqrt(n). Square array read by ascending antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 14, 27, 16, 1, 6, 19, 48, 81, 32, 1, 7, 24, 71, 164, 243, 64, 1, 8, 29, 96, 265, 560, 729, 128, 1, 9, 34, 123, 384, 989, 1912, 2187, 256, 1, 10, 39, 152, 521, 1536, 3691, 6528, 6561, 512, 1, 11, 44, 183, 676, 2207, 6144, 13775, 22288, 19683, 1024
Offset: 0

Views

Author

Peter Luschny, Jun 24 2020

Keywords

Examples

			[0] 1, 2, 4,    8,  16,   32,    64,   128,    256,     512, ...  [A000079]
[1] 1, 3, 9,   27,  81,  243,   729,  2187,   6561,   19683, ...  [A000244]
[2] 1, 4, 14,  48, 164,  560,  1912,  6528,  22288,   76096, ...  [A007070]
[3] 1, 5, 19,  71, 265,  989,  3691, 13775,  51409,  191861, ...  [A001834]
[4] 1, 6, 24,  96, 384, 1536,  6144, 24576,  98304,  393216, ...  [A164908]
[5] 1, 7, 29, 123, 521, 2207,  9349, 39603, 167761,  710647, ...  [A048876]
[6] 1, 8, 34, 152, 676, 3008, 13384, 59552, 264976, 1179008, ...  [A335749]
		

Crossrefs

Cf. A000079 (n=0), A000244 (n=1), A007070 (n=2), A001834 (n=3), A164908 (n=4), A048876 (n=5), A335749 (n=6).

Programs

  • Maple
    Arow := proc(n, len) local H; H := (x, y) -> exp(2*x)*(y*sinh(x*y) + cosh(x*y)):
    series(H(x, sqrt(n)), x, len+1): seq(k!*coeff(%, x, k), k=0..len-1) end:
    A := (n, k) -> Arow(n, k+2)[k+1]: seq(lprint(Arow(n, 9)), n=0..6);
    # Alternative:
    A := proc(n, k) option remember; if k = 0 then return 1 fi;
    if k = 1 then return n+2 fi; 4*A(n, k-1) + (n-4)*A(n, k-2) end;

Formula

The Taylor series of exp(2*x)*(y*sinh(x*y) + cosh(x*y)) starts: 1 + x*(y^2 + 2) + x^2*((5*y^2)/2 + 2) + (1/6)*x^3*(y^4 + 18*y^2 + 8) + x^4*((3*y^4)/8 + (7*y^2)/3 + 2/3) + O(x^5). The coefficient polynomials expand in even powers (cf. A118800).
A(n, k) = k! [x^k] (c*exp(x*(1 + c)) + d*exp(x*(1 + d)))/2 where c = 1 + sqrt(n) and d = 1 - sqrt(n).
A(n, k) = 4*A(n, k-1) + (n-4)*A(n, k-2) if k >= 2. A(n, 0) = 1, A(n, 1) = n + 2.