A335330 Triangle read by rows: T(n,k) is the number of k-colored graphs on n nodes with restricted labels, n>=0, 0<=k<=n.
1, 0, 1, 0, 1, 2, 0, 1, 8, 8, 0, 1, 32, 96, 64, 0, 1, 160, 1152, 2048, 1024, 0, 1, 1088, 17920, 65536, 81920, 32768, 0, 1, 10368, 399360, 2752512, 6553600, 6291456, 2097152, 0, 1, 139520, 13393920, 168820736, 692060160, 1207959552, 939524096, 268435456
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 1, 8, 8; 0, 1, 32, 96, 64; 0, 1, 160, 1152, 2048, 1024; 0, 1, 1088, 17920, 65536, 81920, 32768; ...
Programs
-
Mathematica
nn = 6; e[x_] := Sum[x^n/2^Binomial[n, 2],{n,0,nn}];Table[Take[(Table[2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - y (e[x] - 1)), {x, 0, nn}], {x, y}])[[i]],i], {i, 1, nn + 1}] // Grid
Formula
Let E(x) = Sum_{n>=0} x^n/2^C(n,2). Then 1/(1-y(E(x)-1)) = Sum_{n>=0} Sum_{k=0..n} T(n,k) y^k*x^n/2^C(n,2).
Comments