cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A286941 Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).

Original entry on oeis.org

1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1

Views

Author

Jamie Morken and Michael De Vlieger, May 16 2017

Keywords

Comments

Values in row n of a(n) are those of row n of A286942 complement those of row n of A279864.
From Michael De Vlieger, May 18 2017: (Start)
Numbers t < p_n# such that gcd(t, p_n#) = 0, where p_n# = A002110(n).
Numbers in the reduced residue system of A002110(n).
A005867(n) = number of terms of a(n) in row n; local minimum of Euler's totient function.
A048862(n) = number of primes in row n of a(n).
A048863(n) = number of nonprimes in row n of a(n).
Since 1 is coprime to all n, it delimits the rows of a(n).
The prime A000040(n+1) is the second term in row n since it is the smallest prime coprime to A002110(n) by definition of primorial.
The smallest composite in row n is A001248(n+1) = A000040(n+1)^2.
The Kummer numbers A057588(n) = A002110(n) - 1 are the last terms of rows n, since (n - 1) is less than and coprime to all positive n. (End)

Examples

			The triangle starts
1;
1, 5;
1, 7, 11, 13, 17, 19, 23, 29;
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
		

Crossrefs

Cf. A285784 (nonprimes that appear), A335334 (row sums).

Programs

  • Mathematica
    Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
  • PARI
    row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020

Extensions

More terms from Michael De Vlieger, May 18 2017
Showing 1-1 of 1 results.