A335355 a(n) counts anti-chains of size four in "0,1,2" Motzkin trees on n edges.
5, 55, 420, 2600, 14175, 70665, 329800, 1462680, 6228945, 25661875, 102847560, 402706500, 1545715325, 5831511195, 21671504880, 79475234200, 288043346370, 1033030388790, 3669961024940, 12927078062500, 45182780785500, 156811313843420, 540722493900480, 1853503409060160
Offset: 6
Keywords
Examples
For n=6, we list below all a(6) = 5 four-element anti-chains in Motzkin rooted trees with 6 edges: A A A / \ / \ / \ / \ / \ / \ B C B C B C / \ / \ / \ / \ / \ / \ / \ / \ D E F G D E D E {D, E, F, G} / \ / \ / \ / \ F G F G {C, D, F, G} {C, E, F, G} A A / \ / \ / \ / \ B C B C / \ / \ / \ / \ D E D E / \ / \ / \ / \ F G F G {B, E, F, G} {B, D, F, G}
Links
- Martin Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics, 18(2) (1997), 195-210. [The author counts anti-chains for some kinds of rooted trees but not for Motzkin rooted trees.]
- Lifoma Salaam, Combinatorial statistics on phylogenetic trees, Ph.D. Dissertation, Howard University, Washington D.C., 2008; see Definition 42 (p. 30), Theorem 44 (p. 33), and Table 2.4 (p. 39).
Programs
-
PARI
default(seriesprecision, 50); M(z) = (1 - z - sqrt(1 - 2*z - 3*z^2))/(2*z^2); T(z) = 1/sqrt(1 - 2*z - 3*z^2); for(n=0, 30, print1(polcoef(5*z^6*T(z)^7*M(z)^4, n, z), ", "))
Comments