A335383 a(n) is the number of irreducible Mersenne polynomials in GF(2)[x] that have degree n.
1, 2, 2, 2, 2, 4, 0, 4, 2, 2, 2, 0, 2, 6, 0, 6, 2, 0, 2, 2, 2, 4, 0, 4, 0, 0, 8, 2, 2, 8, 0, 4, 2, 2, 2, 0, 0, 6, 0, 4, 0, 0, 2, 0, 2, 8, 0, 8, 0, 0, 8, 0, 0, 4, 0, 8, 2, 0, 8, 0, 2, 8, 0, 4, 0, 0, 4, 0, 0, 10, 0, 6, 2, 0, 2, 0, 0, 4, 0, 6, 0, 0, 6, 0, 2, 2, 0, 2, 0, 0, 2, 2, 2, 4, 0, 8, 4, 0, 6
Offset: 2
Keywords
Examples
For n = 5 one has a(5) = 2 since there are 2 irreducible Mersenne polynomials of degree 5. Namely, x^2*(x+1)^3+1 and x^3*(x+1)^2+1. For n = 8, a(8) = 0 since there are no irreducible Mersenne polynomial of degree 8.
Links
- L. H. Gallardo and O. Rahavandrainy, On even (unitary) perfect polynomials over F_2, Finite Fields Appl. 18, no. 5, (2012), 920-932.
- L. H. Gallardo and O. Rahavandrainy, Characterization of Sporadic perfect polynomials over F_2, Funct. Approx. Comment. Math.,(2016), 7-21.
- L. H. Gallardo and O. Rahavandrainy, On Mersenne polynomials over F_2, Finite Fields Appl. 59 (2019), 284-296.
- L. H. Gallardo and O. Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
Programs
-
PARI
a(n) = sum(k=1, n-1, polisirreducible(Mod(1, 2)*(x^(n-k)*(x+1)^k+1))); \\ Michel Marcus, Jun 07 2020
Formula
a(A272486(n)) = 0. - Michel Marcus, Jun 07 2020
Comments