cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335404 Numbers k such that the k-th composition in standard order (A066099) has the same product as sum.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 37, 38, 41, 44, 50, 52, 64, 128, 139, 141, 142, 163, 171, 173, 174, 177, 181, 182, 184, 186, 197, 198, 209, 213, 214, 216, 218, 226, 232, 234, 256, 295, 307, 313, 316, 403, 409, 412, 457, 460, 484, 512, 535, 539, 541, 542, 647, 707, 737
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    1: (1)
    2: (2)
    4: (3)
    8: (4)
   10: (2,2)
   16: (5)
   32: (6)
   37: (3,2,1)
   38: (3,1,2)
   41: (2,3,1)
   44: (2,1,3)
   50: (1,3,2)
   52: (1,2,3)
   64: (7)
  128: (8)
  139: (4,2,1,1)
  141: (4,1,2,1)
  142: (4,1,1,2)
  163: (2,4,1,1)
  171: (2,2,2,1,1)
		

Crossrefs

The lengths of standard compositions are given by A000120.
Sum of binary indices is A029931.
Sum of prime indices is A056239.
Sum of standard compositions is A070939.
Product of standard compositions is A124758.
Taking GCD instead of product gives A131577.
The version for prime indices is A301987.
The version for prime indices of nonprime numbers is A301988.
These compositions are counted by A335405.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Times@@stc[#]==Plus@@stc[#]&]

Formula

A124758(a(n)) = A070939(a(n)).