A335411 a(n) is the number of vertices formed by n-secting the angles of an equilateral triangle.
3, 7, 21, 25, 63, 67, 129, 133, 219, 199, 333, 337, 471, 475, 633, 637, 819, 823, 1029, 1009, 1263, 1267, 1521, 1525, 1803, 1807, 2109, 2113, 2439, 2419, 2793, 2797, 3171, 3175, 3573, 3577, 3999, 4003, 4449, 4429, 4923, 4927, 5421, 5425, 5943, 5947, 6489
Offset: 1
Keywords
Links
- Lars Blomberg, Table of n, a(n) for n = 1..500
Formula
Empirically for 12 < n < 500: a(n) = a(n-2) + a(n-10) - a(n-12) + 120.
Conjectures from Colin Barker, Jun 08 2020: (Start)
G.f.: x*(3 + 4*x + 11*x^2 + 24*x^4 + 24*x^6 + 24*x^8 - 24*x^9 + 45*x^10 + 20*x^11 - 11*x^12) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-10) - a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
Colin Barker's recurrence conjecture holds for 13 < n <= 500. Lars Blomberg, Jun 12 2020
Empirical: a(2*k - 1) = 3*(4*k^2 - 6*k + 3), for k >= 1. - Ivan N. Ianakiev, Jul 15 2020
Comments