cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335412 a(n) is the number of edges formed by n-secting the angles of an equilateral triangle.

Original entry on oeis.org

3, 12, 39, 54, 123, 144, 255, 282, 435, 432, 663, 702, 939, 984, 1263, 1314, 1635, 1692, 2055, 2082, 2523, 2592, 3039, 3114, 3603, 3684, 4215, 4302, 4875, 4932, 5583, 5682, 6339, 6444, 7143, 7254, 7995, 8112, 8895, 8982, 9843, 9972, 10839, 10974, 11883, 12024
Offset: 1

Views

Author

Lars Blomberg, Jun 08 2020

Keywords

Comments

See A277402 for illustrations.

Crossrefs

Cf. A332376, A277402 (regions), A335411 (vertices), A335413 (ngons).

Formula

Empirically for 12 < n < 500: a(n) = a(n-2) + a(n-10) - a(n-12) + 240.
Conjectures from Colin Barker, Jun 08 2020: (Start)
G.f.: 3*x*(1 + 3*x + 8*x^2 + 2*x^3 + 14*x^4 + 2*x^5 + 14*x^6 + 2*x^7 + 14*x^8 - 10*x^9 + 25*x^10 + 11*x^11 - 6*x^12) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-10) - a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
Colin Barker's recurrence conjecture holds for 13 < n <= 500. Lars Blomberg, Jun 12 2020