A335413
Irregular table read by rows: T(n,k) = number of k-sided polygons formed by n-secting the angles of an equilateral triangle for k >= 3.
Original entry on oeis.org
1, 6, 12, 3, 3, 1, 24, 6, 36, 9, 9, 7, 48, 24, 6, 72, 21, 15, 19, 84, 48, 12, 6, 108, 51, 33, 25, 126, 90, 12, 6, 168, 69, 51, 43, 180, 120, 48, 18, 216, 123, 81, 49, 240, 180, 54, 36, 288, 171, 99, 73, 312, 234, 84, 48, 372, 225, 117, 103, 396, 288, 126, 60
Offset: 1
Table begins:
1;
6;
12, 3, 3, 1;
24, 6;
36, 9, 9, 7;
48, 24, 6;
72, 21, 15, 19;
84, 48, 12, 6;
108, 51, 33, 25;
126, 90, 12, 6;
168, 69, 51, 43;
180, 120, 48, 18;
216, 123, 81, 49;
240, 180, 54, 36;
288, 171, 99, 73;
312, 234, 84, 48;
A277402
"3-Portolan numbers": number of regions formed by n-secting the angles of an equilateral triangle.
Original entry on oeis.org
1, 6, 19, 30, 61, 78, 127, 150, 217, 234, 331, 366, 469, 510, 631, 678, 817, 870, 1027, 1074, 1261, 1326, 1519, 1590, 1801, 1878, 2107, 2190, 2437, 2514, 2791, 2886, 3169, 3270, 3571, 3678, 3997, 4110, 4447, 4554, 4921, 5046, 5419, 5550, 5941, 6078, 6487, 6630, 7057, 7194
Offset: 1
For n=3, a(n) gives the 19 regions formed by the intersection of 3*2 lines: 3 pentagons, 3 quadrilaterals, 12 triangles, and 1 big central hexagon.
- Lars Blomberg, Table of n, a(n) for n = 1..500
- Lars Blomberg, Coloured illustration for n=3
- Lars Blomberg, Coloured illustration for n=4
- Lars Blomberg, Coloured illustration for n=19
- Lars Blomberg, Coloured illustration for n=20
- J. H. Conway and A. J. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arithmetica 30(3), 229-240 (1976).
- Wikipedia, Rhumbline network
-
regions[n_]:=
If[Mod[n,2]==0, 3n^2-6n+6, 3n^2-3n+1]-
6*Length@
Select[
Flatten@
With[
{b=N@
Table[
1/2 - (Sqrt[3]/2)Tan[(60Degree/n)(n/2-i)],
{i, 1, Floor[n/2]- 1}
]},
Table[
Abs[(1-b[[k]])b[[l]]b[[j]] - b[[k]](1-b[[l]])(1-b[[j]])],
{j, 1, Floor[n/2]-1},
{k, 1, Floor[n/2]-1},
{l, 1, Floor[n/2]-1}]
],
Chop@#==0&]
A335411
a(n) is the number of vertices formed by n-secting the angles of an equilateral triangle.
Original entry on oeis.org
3, 7, 21, 25, 63, 67, 129, 133, 219, 199, 333, 337, 471, 475, 633, 637, 819, 823, 1029, 1009, 1263, 1267, 1521, 1525, 1803, 1807, 2109, 2113, 2439, 2419, 2793, 2797, 3171, 3175, 3573, 3577, 3999, 4003, 4449, 4429, 4923, 4927, 5421, 5425, 5943, 5947, 6489
Offset: 1
A335527
a(n) is the number of edges formed by n-secting the angles of a square.
Original entry on oeis.org
4, 8, 60, 60, 188, 152, 380, 356, 644, 600, 980, 868, 1388, 1304, 1868, 1780, 2412, 2296, 3012, 2924, 3700, 3592, 4460, 4276, 5292, 5136, 6196, 6020, 7156, 6960, 8180, 8012, 9292, 9080, 10476, 10204, 11716, 11472, 13028, 12796, 14404, 14160, 15868, 15636
Offset: 1
Showing 1-4 of 4 results.
Comments