A335413
Irregular table read by rows: T(n,k) = number of k-sided polygons formed by n-secting the angles of an equilateral triangle for k >= 3.
Original entry on oeis.org
1, 6, 12, 3, 3, 1, 24, 6, 36, 9, 9, 7, 48, 24, 6, 72, 21, 15, 19, 84, 48, 12, 6, 108, 51, 33, 25, 126, 90, 12, 6, 168, 69, 51, 43, 180, 120, 48, 18, 216, 123, 81, 49, 240, 180, 54, 36, 288, 171, 99, 73, 312, 234, 84, 48, 372, 225, 117, 103, 396, 288, 126, 60
Offset: 1
Table begins:
1;
6;
12, 3, 3, 1;
24, 6;
36, 9, 9, 7;
48, 24, 6;
72, 21, 15, 19;
84, 48, 12, 6;
108, 51, 33, 25;
126, 90, 12, 6;
168, 69, 51, 43;
180, 120, 48, 18;
216, 123, 81, 49;
240, 180, 54, 36;
288, 171, 99, 73;
312, 234, 84, 48;
A335411
a(n) is the number of vertices formed by n-secting the angles of an equilateral triangle.
Original entry on oeis.org
3, 7, 21, 25, 63, 67, 129, 133, 219, 199, 333, 337, 471, 475, 633, 637, 819, 823, 1029, 1009, 1263, 1267, 1521, 1525, 1803, 1807, 2109, 2113, 2439, 2419, 2793, 2797, 3171, 3175, 3573, 3577, 3999, 4003, 4449, 4429, 4923, 4927, 5421, 5425, 5943, 5947, 6489
Offset: 1
A335412
a(n) is the number of edges formed by n-secting the angles of an equilateral triangle.
Original entry on oeis.org
3, 12, 39, 54, 123, 144, 255, 282, 435, 432, 663, 702, 939, 984, 1263, 1314, 1635, 1692, 2055, 2082, 2523, 2592, 3039, 3114, 3603, 3684, 4215, 4302, 4875, 4932, 5583, 5682, 6339, 6444, 7143, 7254, 7995, 8112, 8895, 8982, 9843, 9972, 10839, 10974, 11883, 12024
Offset: 1
A278823
4-Portolan numbers: number of regions formed by n-secting the angles of a square.
Original entry on oeis.org
1, 4, 29, 32, 93, 84, 189, 188, 321, 316, 489, 460, 693, 676, 933, 916, 1205, 1180, 1505, 1496, 1849, 1836, 2229, 2188, 2645, 2616, 3097, 3060, 3577, 3536, 4089, 4064, 4645, 4604, 5237, 5176, 5857, 5808, 6513, 6472, 7201, 7160, 7933, 7900, 8693, 8648, 9497
Offset: 1
For n=3, the 4*(3-1) = 8 lines intersect to make 12 triangles, 8 kites, 8 irregular quadrilaterals, and an octagon in the middle. The total number of regions a(3) is therefore 12+8+8+1 = 29.
- Lars Blomberg, Table of n, a(n) for n = 1..500
- Ethan Beihl, Pictures for some small n
- Lars Blomberg, Coloured illustration for n=4
- Lars Blomberg, Coloured illustration for n=5
- Lars Blomberg, Coloured illustration for n=64
- Lars Blomberg, Coloured illustration for n=65
- B. Poonen and M. Rubinstein (1998) The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11(1), pp. 135-156, doi:10.1137/S0895480195281246, arXiv:math.MG/9508209 (typos corrected)
3-Portolan numbers (equilateral triangle):
A277402.
n-sected sides (not angles):
A108914.
Showing 1-4 of 4 results.
Comments