A277402 "3-Portolan numbers": number of regions formed by n-secting the angles of an equilateral triangle.
1, 6, 19, 30, 61, 78, 127, 150, 217, 234, 331, 366, 469, 510, 631, 678, 817, 870, 1027, 1074, 1261, 1326, 1519, 1590, 1801, 1878, 2107, 2190, 2437, 2514, 2791, 2886, 3169, 3270, 3571, 3678, 3997, 4110, 4447, 4554, 4921, 5046, 5419, 5550, 5941, 6078, 6487, 6630, 7057, 7194
Offset: 1
Keywords
Examples
For n=3, a(n) gives the 19 regions formed by the intersection of 3*2 lines: 3 pentagons, 3 quadrilaterals, 12 triangles, and 1 big central hexagon.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..500
- Lars Blomberg, Coloured illustration for n=3
- Lars Blomberg, Coloured illustration for n=4
- Lars Blomberg, Coloured illustration for n=19
- Lars Blomberg, Coloured illustration for n=20
- J. H. Conway and A. J. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arithmetica 30(3), 229-240 (1976).
- Wikipedia, Rhumbline network
Programs
-
Mathematica
regions[n_]:= If[Mod[n,2]==0, 3n^2-6n+6, 3n^2-3n+1]- 6*Length@ Select[ Flatten@ With[ {b=N@ Table[ 1/2 - (Sqrt[3]/2)Tan[(60Degree/n)(n/2-i)], {i, 1, Floor[n/2]- 1} ]}, Table[ Abs[(1-b[[k]])b[[l]]b[[j]] - b[[k]](1-b[[l]])(1-b[[j]])], {j, 1, Floor[n/2]-1}, {k, 1, Floor[n/2]-1}, {l, 1, Floor[n/2]-1}] ], Chop@#==0&]
Formula
Empirical g.f.: x*(1 + 5*x + 12*x^2 + 6*x^3 + 18*x^4 + 6*x^5 + 18*x^6 + 6*x^7 + 18*x^8 - 6*x^9 + 29*x^10 + 13*x^11 - 6*x^12) / ((1-x)^3*(1+x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Oct 14 2016
Empirically for 12 < n <= 500: a(n) = a(n-2) + a(n-10) - a(n-12) + 120. - Lars Blomberg, Jun 08 2020
Empirical: a(2*k + 1) = 6*k*(2*k + 1) + 1, for k >= 0. - Ivan N. Ianakiev, Jun 27 2020
Empirical: 10*a(n) = 30*n^2 -45*n +23 +13*(-1)^n -15*(-1)^n*n - 24*b(n) where b(n) is the 10-periodic sequence 4, 0, -1, 0, -1, 0, -1, 0, -1, 0, 4, 0 .... of offset 0. - R. J. Mathar, Jul 05 2020
Comments