cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A335420 a(n) = A000120(A163511(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 3, 2, 4, 2, 3, 1, 3, 4, 6, 2, 4, 3, 3, 2, 4, 4, 3, 2, 3, 3, 3, 1, 6, 3, 5, 4, 7, 6, 6, 2, 4, 4, 6, 3, 4, 3, 5, 2, 4, 4, 6, 4, 4, 3, 4, 2, 6, 3, 5, 3, 2, 3, 3, 1, 6, 6, 6, 3, 7, 5, 5, 4, 5, 7, 7, 6, 3, 6, 6, 2, 5, 4, 5, 4, 8, 6, 7, 3, 6, 4, 6, 3, 6, 5, 4, 2, 5, 4, 7, 4, 4, 6, 5, 4, 6
Offset: 0

Views

Author

Antti Karttunen, Jun 09 2020

Keywords

Crossrefs

Cf. A000079 (positions of ones), A000120, A001222, A163511, A335421, A335422.
Cf. also A323901, A334204.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A054429(n) = ((3<<#binary(n\2))-n-1);
    A163511(n) = if(!n,1,A005940(1+A054429(n)));
    A335420(n) = hammingweight(A163511(n));
    
  • Python
    from sympy import nextprime
    def A335420(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return (c*p).bit_count() # Chai Wah Wu, Jul 25 2023

Formula

a(n) = A000120(A163511(n)).
a(n) = A001222(A335422(n)).
a(n) = a(2n) = a(A000265(n)).
For all n >= 0, a(2^n) = 1.

A335422 a(n) = A005940(1+A163511(n)).

Original entry on oeis.org

2, 3, 5, 4, 7, 10, 9, 6, 11, 36, 21, 50, 25, 16, 15, 8, 13, 154, 225, 486, 55, 84, 147, 98, 49, 90, 81, 28, 35, 30, 27, 12, 17, 2500, 429, 8918, 1225, 1080, 9375, 840, 91, 2662, 495, 3750, 605, 220, 363, 1250, 121, 88, 525, 240, 625, 490, 99, 126, 77, 64, 105, 72, 125, 22, 45, 18, 19, 26950, 21609, 43350, 1105, 186340, 67881
Offset: 0

Views

Author

Antti Karttunen, Jun 09 2020

Keywords

Comments

Permutation of natural numbers larger than one.

Crossrefs

Programs

Formula

a(n) = A005940(1+A163511(n)).
For all n >= 0, a(2^n) = A000040(2+n).
A001222(a(n)) = A335420(n).
Showing 1-2 of 2 results.