A335425 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000188(i) = A000188(j) and A335424(i) = A335424(j) for all i, j >= 1.
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 5, 2, 7, 4, 8, 2, 9, 2, 5, 7, 7, 2, 10, 11, 7, 9, 5, 2, 12, 2, 13, 7, 7, 4, 14, 2, 7, 7, 15, 2, 16, 2, 5, 9, 7, 2, 13, 17, 18, 7, 5, 2, 19, 7, 15, 7, 7, 2, 10, 2, 7, 9, 20, 7, 16, 2, 5, 7, 16, 2, 21, 2, 7, 18, 5, 4, 16, 2, 13, 22, 7, 2, 15, 7, 7, 7, 15, 2, 23, 7, 5, 7, 7, 7, 24, 2, 25, 9, 26, 2, 16, 2, 15, 12
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000188(n) = core(n, 1)[2]; \\ From A000188 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A248663(n) = A048675(core(n)); A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; A335423(n) = A005940(1+A248663(n)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 Aux335425(n) = [A000188(n),A046523(A335423(n))]; v335425 = rgs_transform(vector(up_to,n,Aux335425(n))); A335425(n) = v335425[n];
Comments