cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335427 a(1) = 0; for k >= 2, a(prime(k)) = 0, a(k^2) = 2 * a(k); otherwise a(n) = a(A334870(n)) + 1.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 2, 4, 0, 1, 0, 6, 2, 1, 0, 5, 0, 1, 2, 10, 0, 3, 0, 5, 2, 1, 4, 2, 0, 1, 2, 7, 0, 3, 0, 18, 4, 1, 0, 6, 0, 1, 2, 34, 0, 3, 4, 11, 2, 1, 0, 8, 0, 1, 8, 6, 4, 3, 0, 66, 2, 5, 0, 3, 0, 1, 2, 130, 8, 3, 0, 8, 0, 1, 0, 12, 4, 1, 2, 19, 0, 5, 8, 258, 2, 1, 4, 7, 0, 1, 16, 2, 0, 3, 0, 35, 6
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jun 15 2020

Keywords

Crossrefs

A052126, A225546, A334870, A335426 are used in formulas defining this sequence.
Related fully additive sequence: A048675.
Cf. A062090 (indices of zeros), A003159 (indices of even values), A036554 (indices of odd values).
A003961, A019565 are used to express relationship between terms of this sequence.

Programs

  • PARI
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A335427(n) = if(n<=2,n-1, if(isprime(n), 0, if(issquare(n), 2*A335427(sqrtint(n)), 1+A335427(A334870(n)))));
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A052126(n) = if(1==n,n,(n/vecmax(factor(n)[, 1])));
    A335427(n) = if(n<=2,n-1, if(issquarefree(n), A048675(A052126(n)), my(k=core(n)); A048675(k) + 2*A335427(sqrtint(n/k))));

Formula

Alternative definition: (Start)
a(1) = 0, a(2) = 1; otherwise for n = k * m^2, k squarefree:
if m = 1, a(n) = A048675(A052126(k));
if m > 1, a(n) = A048675(k) + 2 * a(m).
(End)
For n = 4 * A122132(k), a(n) = A048675(n).
More generally, a(n) = A048675(n) if and only if n is in A335738.
a(n) = A335426(A225546(n)).
a(A003961(2k+1)) = 2 * a(2k+1).
If n is in A036554, a(n) = a(n/2) + 1; otherwise for n <> 3, a(n) = 2 * a(A019565(k/2) * m^2) - a(m^2), where n = A019565(k) * m^2.
Showing 1-1 of 1 results.