cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335428 Prime exponent of the first Fermi-Dirac factor (number of form p^(2^k), A050376) reached, when starting from n and iterating with A334870, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 26 2020

Keywords

Examples

			For n=27, when iterating with A334870, we obtain the path 27 -> 18 -> 9, with that 9 being the first prime power encountered that has an exponent of the form 2^k, as 9 = 3^2, thus a(27) = 2. See the binary tree A334860 or A334866 for how such paths go.
For n=900, when iterating with A334870 we obtain the path 900 -> 30 -> 15 -> 10 -> 5, and 5^1 is finally a prime power with an exponent that is two's power, thus a(900) = 1. Note that 900 is the first such position of 1 in this sequence that is not listed in A333634.
		

Crossrefs

Programs

  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A302777(n) = A209229(isprimepower(n));
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A335428(n) = { while(n>1 && !A302777(n), n = A334870(n)); isprimepower(n); };
    
  • PARI
    \\ Faster, A209229 and A302777 like in above:
    A335428(n) = if(1==n,0, while(!A302777(n), if(issquarefree(n), return(1)); if(issquare(n), n = sqrtint(n), n /= core(n))); isprimepower(n));